skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoindentation of Electropolished FeCrAl Alloy Welds

Abstract

The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength thanmore » C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1343694
Report Number(s):
LA-UR-17-20914
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Weaver, Jordan, Aydogan, Eda, Mara, Nathan Allan, and Maloy, Stuart Andrew. Nanoindentation of Electropolished FeCrAl Alloy Welds. United States: N. p., 2017. Web. doi:10.2172/1343694.
Weaver, Jordan, Aydogan, Eda, Mara, Nathan Allan, & Maloy, Stuart Andrew. Nanoindentation of Electropolished FeCrAl Alloy Welds. United States. doi:10.2172/1343694.
Weaver, Jordan, Aydogan, Eda, Mara, Nathan Allan, and Maloy, Stuart Andrew. Mon . "Nanoindentation of Electropolished FeCrAl Alloy Welds". United States. doi:10.2172/1343694. https://www.osti.gov/servlets/purl/1343694.
@article{osti_1343694,
title = {Nanoindentation of Electropolished FeCrAl Alloy Welds},
author = {Weaver, Jordan and Aydogan, Eda and Mara, Nathan Allan and Maloy, Stuart Andrew},
abstractNote = {The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.},
doi = {10.2172/1343694},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 13 00:00:00 EST 2017},
month = {Mon Feb 13 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensilemore » specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.« less
  • The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.
  • High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAlmore » alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed the non-welded specimens to exhibit strain-induced softening (decrease in the true stress level) with increasing plastic strain during tensile testing. Fracture for the weldments was found to occur exclusively within the fusion zone. The mechanical performance of the weldment was speculated to be directly linked to variances in the radiation-induced microstructure including the formation of dislocation loops and precipitation of the Cr-rich α' phase. The localized microstructural variation within the weldments, including grain size, was determined to play a significant role in the radiation-induced microstructure. The results summarized within highlight the need for additional data on the radiation tolerance of weldments as the mechanical performance of the fusion zone was shown to be the limiting factor in the overall performance of the weldments.« less
  • The 593/sup 0/C (1100/sup 0/F) stress rupture behavior of similar metal welds (SMWs) and dissimilar metal welds (DMWs) was investigated under cyclic load and cyclic temperature conditions to provide insight into the question, ''Why do DMWs fail sooner than SMWs in the fossil fuel boilers.'' The weld joints of interest were an all ferritic steel SMW made by fusion welding 2-1/4Cr-1Mo to 2-1/4Cr-1Mo using 2-1/4Cr-1Mo filler metal and an austenitic to ferritic steel DMW made by fusion welding Alloy-800H to 2-1/4Cr-1Mo using a nickel base filler metal ERNiCr-3. The stress rupture behavior obtained on cross weld specimens was similar formore » both types of welds with only a 20% reduction in rupture life for the DMW. For rupture times less than 1500 hours, failures occurred in the 2-1/4Cr-1Mo base metal whereas, for rupture times greater than 1500 hours, failures occurred in the 2-1/4Cr-1Mo heat affected zone (HAZ). The HAZ failures exhibited a more brittle appearance than the base metal failures for both types of welds and it appears that the life of both joints was limited by the stress rupture properties of the HAZ. These results support the hypothesis that increased residual stresses due to abrupt changes in hardness (strength) of metals involved are the major contributors to the reduction in life of DMWs as compared to SMWs. 10 refs., 15 figs., 7 tabs.« less
  • The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} rising load tests in air and hydrogenated water and cooldown testing in water under constant-displacement conditions. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were reduced by 70% to 95%, relative to their air counterpart. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescencemore » to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature crack propagation (LTCP) is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on LTCP were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to LTCP as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water. Cooldown testing of EN82H welds under constant-displacement conditions was performed to determine if LTCP data from rising load J{sub IC}/K{sub Pmax} tests predict the onset of LTCP for other load paths. In these tests, bolt-loaded CT specimens were subjected to 288 C water for up to 1 week, cooled to 54 C and held in 54 C hydrogenated water for 1 week. This cycle was repeated up to 6 times. For two of the three welds tested, critical K{sub I} levels for LTCP under constant-displacement conditions were much higher than rising load K{sub Pmax} values. Bolt-loaded specimens from a third weld were found to exhibit LTCP at K{sub I} levels comparable to K{sub Pmax} values. Although work to date indicates that rising load tests either accurately or conservatively predict the critical conditions for LTCP under constant displacement conditions, the potential for LTCP at K{sub I} levels less than K{sub Pmax} has not been fully evaluated. Annealing at 1093 C reduces or eliminates LTCP susceptibility. The microstructure and mechanical properties for susceptible and nonsusceptible EN82H welds were characterized to identify the key material parameters responsible for LTCP in the as-welded condition. The key microstructural feature associated with LTCP appears to be fine Nb- and Ti-rich carbonitrides decorating grain boundaries. In addition, the higher yield strength for the as-fabricated weld also promotes LTCP because it increases stresses and local hydrogen concentrations ahead of a crack.« less