skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes

Abstract

ORNL collaborated with Arkema Inc. to investigate poly(etherketoneketone) (PEKK) and its composites as potential feedstock material for Big Area Additive Manufacturing (BAAM) system. In this work thermal and rheological properties were investigated and characterized in order to identify suitable processing conditions and material flow behavior for BAAM process.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility (MDF)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1343535
Report Number(s):
ORNL/TM-2016/728
ED2701000; CEED492; CRADA/NFE-16-06056
DOE Contract Number:
AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Kunc, Vlastimil, Kishore, Vidya, Chen, Xun, Ajinjeru, Christine, Duty, Chad, and Hassen, Ahmed A. High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes. United States: N. p., 2016. Web. doi:10.2172/1343535.
Kunc, Vlastimil, Kishore, Vidya, Chen, Xun, Ajinjeru, Christine, Duty, Chad, & Hassen, Ahmed A. High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes. United States. doi:10.2172/1343535.
Kunc, Vlastimil, Kishore, Vidya, Chen, Xun, Ajinjeru, Christine, Duty, Chad, and Hassen, Ahmed A. Thu . "High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes". United States. doi:10.2172/1343535. https://www.osti.gov/servlets/purl/1343535.
@article{osti_1343535,
title = {High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes},
author = {Kunc, Vlastimil and Kishore, Vidya and Chen, Xun and Ajinjeru, Christine and Duty, Chad and Hassen, Ahmed A},
abstractNote = {ORNL collaborated with Arkema Inc. to investigate poly(etherketoneketone) (PEKK) and its composites as potential feedstock material for Big Area Additive Manufacturing (BAAM) system. In this work thermal and rheological properties were investigated and characterized in order to identify suitable processing conditions and material flow behavior for BAAM process.},
doi = {10.2172/1343535},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 2016},
month = {Thu Sep 01 00:00:00 EDT 2016}
}

Technical Report:

Save / Share:
  • Techmer Engineered Solutions (TES) is working with Oak Ridge National Laboratory (ORNL) to develop materials and evaluate their use for ORNL s recently developed Big Area Additive Manufacturing (BAAM) system for tooling applications. The first phase of the project established the performance of some commercially available polymer compositions deposited with the BAAM system. Carbon fiber reinforced ABS demonstrated a tensile strength of nearly 10 ksi, which is sufficient for a number of low temperature tooling applications.
  • This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generatedmore » considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.« less
  • Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).
  • The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less
  • Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact ofmore » the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii) systems development, (iv) material feedstock, (v) process planning, (vi) residual stress & distortion, (vii) post-processing, (viii) qualification of parts, (ix) supply chain and (x) business case. Furthermore, an open innovation network methodology was proposed to accelerate the development and deployment of new large-scale metal additive manufacturing technology with the goal of creating a new generation of high deposition rate equipment, affordable feed stocks, and large metallic components to enhance America’s economic competitiveness.« less