skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A pan-Arctic synthesis of CH 4 and CO 2 production from anoxic soil incubations

Abstract

Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH 4) and carbon dioxide (CO 2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region in order to evaluate large-scale controls of anaerobic CO 2 and CH 4 production and compare the relative importance of landcape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found five-fold higher maximum CH 4 production per gram soil carbon from organic soils than mineral soils. Maximum CH 4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH 4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH 4 and median anaerobic CO 2 production decreased withmore » depth, while CO 2:CH 4 production increased with depth. Maximum CH 4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH 4 production in permafrost ecosystems, and suggests the need for longer-term anaerobic incubations to fully capture CH 4 dynamics. Lastly, our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO 2 and CH 4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [5];  [6];  [4];  [7];  [8];  [9];  [10];  [10];  [4];  [11];  [12]
  1. Univ. of New Hampshire, Durham, NH (United States). Earth Systems Research Center, Inst. for the Study of Earth, Oceans & Space
  2. Woods Hole Research Center, Falmouth, MA (United States)
  3. Colorado State Univ., Fort Collins, CO (United States). Natural Resource Ecology Lab.
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division and Climate Change Science Inst.
  5. Univ. of California, Irvine, CA (United States). Dept. of Earth System Science
  6. Univ. of Alaska, Fairbanks, AK (United States)
  7. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division
  8. Univ. of Vienna (Austria); Austrian Polar Research Inst., Vienna (Austria)
  9. Univ. of South Bohemia, Ceske Budejovice (Czech Republic)
  10. Univ. of Florida, Gainesville, FL (United States). Dept. of Biology
  11. Univ. of Guelph, ON (Canada). Dept. of Integrative Biology
  12. U.S. Geological Survey, Menlo Park, CA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1343493
DOE Contract Number:  
AC05-00OR22725; ARC-1203777; FWF-I370-B17
Resource Type:
Journal Article
Journal Name:
Global Change Biology
Additional Journal Information:
Journal Volume: 21; Journal Issue: 7; Journal ID: ISSN 1354-1013
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; anaerobic incubation; arctic; boreal; carbon dioxide; climate change; methane; permafrost

Citation Formats

Treat, Claire C., Natali, Susan M., Ernakovich, Jessica, Iversen, Colleen M., Lupascu, Massimo, McGuire, Anthony David, Norby, Richard J., Roy Chowdhury, Taniya, Richter, Andreas, Šantrůčková, Hana, Schädel, Christina, Schuur, Edward A. G., Sloan, Victoria L., Turetsky, Merritt R., and Waldrop, Mark P. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. United States: N. p., 2015. Web. doi:10.1111/gcb.12875.
Treat, Claire C., Natali, Susan M., Ernakovich, Jessica, Iversen, Colleen M., Lupascu, Massimo, McGuire, Anthony David, Norby, Richard J., Roy Chowdhury, Taniya, Richter, Andreas, Šantrůčková, Hana, Schädel, Christina, Schuur, Edward A. G., Sloan, Victoria L., Turetsky, Merritt R., & Waldrop, Mark P. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. United States. doi:10.1111/gcb.12875.
Treat, Claire C., Natali, Susan M., Ernakovich, Jessica, Iversen, Colleen M., Lupascu, Massimo, McGuire, Anthony David, Norby, Richard J., Roy Chowdhury, Taniya, Richter, Andreas, Šantrůčková, Hana, Schädel, Christina, Schuur, Edward A. G., Sloan, Victoria L., Turetsky, Merritt R., and Waldrop, Mark P. Sat . "A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations". United States. doi:10.1111/gcb.12875.
@article{osti_1343493,
title = {A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations},
author = {Treat, Claire C. and Natali, Susan M. and Ernakovich, Jessica and Iversen, Colleen M. and Lupascu, Massimo and McGuire, Anthony David and Norby, Richard J. and Roy Chowdhury, Taniya and Richter, Andreas and Šantrůčková, Hana and Schädel, Christina and Schuur, Edward A. G. and Sloan, Victoria L. and Turetsky, Merritt R. and Waldrop, Mark P.},
abstractNote = {Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region in order to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landcape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found five-fold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems, and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Lastly, our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw.},
doi = {10.1111/gcb.12875},
journal = {Global Change Biology},
issn = {1354-1013},
number = 7,
volume = 21,
place = {United States},
year = {2015},
month = {1}
}

Works referenced in this record:

Field information links permafrost carbon to physical vulnerabilities of thawing: C AND N VULERABLITIES OF THAWING
journal, August 2012

  • Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL051958

Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
journal, September 2012

  • Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M.
  • The ISME Journal, Vol. 7, Issue 2
  • DOI: 10.1038/ismej.2012.99

Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

Disequilibrium response of permafrost in boreal continental western Canada to climate change
journal, May 1995

  • Halsey, Linda A.; Vitt, Dale H.; Zoltai, Stephen C.
  • Climatic Change, Vol. 30, Issue 1
  • DOI: 10.1007/BF01093225

Methanogenesis and Methanogen Diversity in Three Peatland Types of the Discontinuous Permafrost Zone, Boreal Western Continental Canada
journal, December 2006

  • Yavitt, Joseph B.; Basiliko, Nathan; Turetsky, Merritt R.
  • Geomicrobiology Journal, Vol. 23, Issue 8
  • DOI: 10.1080/01490450600964482

Uncoupling of acetate degradation from methane formation in Alaskan wetlands: Connections to vegetation distribution: PATHWAYS OF METHANOGENESIS IN WETLANDS
journal, May 2008

  • Hines, Mark E.; Duddleston, Khrystyne N.; Rooney-Varga, Juliette N.
  • Global Biogeochemical Cycles, Vol. 22, Issue 2
  • DOI: 10.1029/2006GB002903

Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil
journal, June 2009


Permafrost degradation stimulates carbon loss from experimentally warmed tundra
journal, March 2014

  • Natali, Susan M.; Schuur, Edward A. G.; Webb, Elizabeth E.
  • Ecology, Vol. 95, Issue 3
  • DOI: 10.1890/13-0602.1

Variation in methane production pathways associated with permafrost decomposition in collapse scar bogs of Alberta, Canada: VARIATION IN METHANE PRODUCTION
journal, October 2007

  • Prater, James L.; Chanton, Jeffrey P.; Whiting, Gary J.
  • Global Biogeochemical Cycles, Vol. 21, Issue 4
  • DOI: 10.1029/2006GB002866

Temperature and Plant Species Control Over Litter Decomposition in Alaskan Tundra
journal, February 1996

  • Hobbie, Sarah E.
  • Ecological Monographs, Vol. 66, Issue 4
  • DOI: 10.2307/2963492

Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia
journal, January 2013

  • Knoblauch, Christian; Beer, Christian; Sosnin, Alexander
  • Global Change Biology, Vol. 19, Issue 4
  • DOI: 10.1111/gcb.12116

Quality: A Bridge between Theory and Experiment in Soil Organic Matter Studies
journal, September 1996

  • Ågren, Göran I.; Bosatta, Ernesto; Agren, Goran I.
  • Oikos, Vol. 76, Issue 3
  • DOI: 10.2307/3546345

Ecosystem and physiological controls over methane production in northern wetlands
journal, January 1994

  • Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.
  • Journal of Geophysical Research, Vol. 99, Issue D1
  • DOI: 10.1029/93JD00391

An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland
journal, November 2011

  • O’Donnell, Jonathan A.; Jorgenson, M. Torre; Harden, Jennifer W.
  • Ecosystems, Vol. 15, Issue 2
  • DOI: 10.1007/s10021-011-9504-0

Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities
journal, October 2011

  • Myers-Smith, Isla H.; Forbes, Bruce C.; Wilmking, Martin
  • Environmental Research Letters, Vol. 6, Issue 4
  • DOI: 10.1088/1748-9326/6/4/045509

Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production
journal, April 2014

  • Hodgkins, S. B.; Tfaily, M. M.; McCalley, C. K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1314641111

Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
journal, March 2013


Carbon dynamics in peat bogs: Insights from substrate macromolecular chemistry
journal, September 2001

  • Kuder, Tomasz; Kruge, Michael A.
  • Global Biogeochemical Cycles, Vol. 15, Issue 3
  • DOI: 10.1029/2000GB001293

Methane emissions from wetlands, southern Hudson Bay lowland
journal, January 1994

  • Moore, T. R.; Heyes, A.; Roulet, N. T.
  • Journal of Geophysical Research, Vol. 99, Issue D1
  • DOI: 10.1029/93JD02457

Accelerated thawing of subarctic peatland permafrost over the last 50 years
journal, January 2004


Effects of permafrost melting on CO 2 and CH 4 exchange of a poorly drained black spruce lowland : PERMAFROST THAW AND C GAS EXCHANGE
journal, June 2006

  • Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
  • Journal of Geophysical Research: Biogeosciences, Vol. 111, Issue G2
  • DOI: 10.1029/2005JG000099

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

Species-specific Effects of Vascular Plants on Carbon Turnover and Methane Emissions from Wetlands
journal, August 2005


Potential carbon release from permafrost soils of Northeastern Siberia
journal, December 2006


Very high resolution interpolated climate surfaces for global land areas
journal, January 2005

  • Hijmans, Robert J.; Cameron, Susan E.; Parra, Juan L.
  • International Journal of Climatology, Vol. 25, Issue 15
  • DOI: 10.1002/joc.1276

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
journal, May 2009

  • Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.
  • Nature, Vol. 459, Issue 7246
  • DOI: 10.1038/nature08031

Response of boreal ecosystems to varying modes of permafrost degradation
journal, September 2005

  • Jorgenson, M. T.; Osterkamp, T. E.
  • Canadian Journal of Forest Research, Vol. 35, Issue 9
  • DOI: 10.1139/x05-153

Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
journal, September 2006

  • Walter, K. M.; Zimov, S. A.; Chanton, J. P.
  • Nature, Vol. 443, Issue 7107
  • DOI: 10.1038/nature05040

The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes
journal, September 2007


Expert assessment of vulnerability of permafrost carbon to climate change
journal, March 2013


Methane Oxidation, Production, and Emission at Contrasting Sites in a Boreal Bog
journal, July 2000


Methane emission and transport by arctic sedges in Alaska: Results of a vegetation removal experiment
journal, November 1998

  • King, Jennifer Y.; Reeburgh, William S.; Regli, Shannon K.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D22
  • DOI: 10.1029/98JD00052

Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems
journal, June 2003


Increased CO 2 loss from vegetated drained lake tundra ecosystems due to flooding : INCREASED TUNDRA CO
journal, April 2012

  • Zona, Donatella; Lipson, David A.; Paw U., Kyaw T.
  • Global Biogeochemical Cycles, Vol. 26, Issue 2
  • DOI: 10.1029/2011GB004037

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product: ANAEROBIC MICROBIAL BIOGEOCHEMISTRY IN A NORTHERN BOG
journal, October 2002

  • Duddleston, Khrystyne N.; Kinney, Monica A.; Kiene, Ronald P.
  • Global Biogeochemical Cycles, Vol. 16, Issue 4
  • DOI: 10.1029/2001GB001402

The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate
journal, September 2011


Regulation of methane production in a Swedish acid mire by pH, temperature and substrate
journal, June 1998


Partitioning pathways of CO2 production in peatlands with stable carbon isotopes
journal, December 2012

  • Corbett, J. Elizabeth; Tfaily, Malak M.; Burdige, David J.
  • Biogeochemistry, Vol. 114, Issue 1-3
  • DOI: 10.1007/s10533-012-9813-1

Thawing sub-arctic permafrost: Effects on vegetation and methane emissions
journal, January 2004


Large N2O emissions from cryoturbated peat soil in tundra
journal, February 2009

  • Repo, Maija E.; Susiluoto, Sanna; Lind, Saara E.
  • Nature Geoscience, Vol. 2, Issue 3
  • DOI: 10.1038/ngeo434

Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
journal, July 2013

  • Haroon, Mohamed F.; Hu, Shihu; Shi, Ying
  • Nature, Vol. 500, Issue 7464
  • DOI: 10.1038/nature12375

Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH
journal, March 1993


Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem
journal, January 2012


Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing
journal, December 2006


Sensitivity of the carbon cycle in the Arctic to climate change
journal, November 2009

  • McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.
  • Ecological Monographs, Vol. 79, Issue 4
  • DOI: 10.1890/08-2025.1

Relative Importance for Linear Regression in R : The Package relaimpo
journal, January 2006


Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniques
journal, July 2013


Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest: CARBON EXCHANGE IN A PERMAFROST COLLAPSE
journal, December 2007

  • Myers-Smith, Isla H.; McGuire, A. David; Harden, Jennifer W.
  • Journal of Geophysical Research: Biogeosciences, Vol. 112, Issue G4
  • DOI: 10.1029/2007JG000423

Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013

  • Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12417

Temperature and peat type control CO 2 and CH 4 production in Alaskan permafrost peats
journal, April 2014

  • Treat, C. C.; Wollheim, W. M.; Varner, R. K.
  • Global Change Biology, Vol. 20, Issue 8
  • DOI: 10.1111/gcb.12572

Shift from Acetoclastic to H2-Dependent Methanogenesis in a West Siberian Peat Bog at Low pH Values and Isolation of an Acidophilic Methanobacterium Strain
journal, February 2007

  • Kotsyurbenko, O. R.; Friedrich, M. W.; Simankova, M. V.
  • Applied and Environmental Microbiology, Vol. 73, Issue 7
  • DOI: 10.1128/AEM.02413-06

Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1
journal, January 2010

  • Wania, R.; Ross, I.; Prentice, I. C.
  • Geoscientific Model Development, Vol. 3, Issue 2
  • DOI: 10.5194/gmd-3-565-2010

Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: The contribution of photosynthates to methane emission: PHOTOSYNTHATE CONTRIBUTION TO METHANE
journal, October 2002

  • King, J. Y.; Reeburgh, W. S.; Thieler, K. K.
  • Global Biogeochemical Cycles, Vol. 16, Issue 4
  • DOI: 10.1029/2001GB001456

Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland
journal, January 2013


Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions
journal, October 2005


Methane dynamics regulated by microbial community response to permafrost thaw
journal, October 2014

  • McCalley, Carmody K.; Woodcroft, Ben J.; Hodgkins, Suzanne B.
  • Nature, Vol. 514, Issue 7523
  • DOI: 10.1038/nature13798

Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4
journal, April 2012

  • Lawrence, David M.; Slater, Andrew G.; Swenson, Sean C.
  • Journal of Climate, Vol. 25, Issue 7
  • DOI: 10.1175/JCLI-D-11-00334.1

Controls on CH 4 emissions from a northern peatland
journal, March 1999

  • Bellisario, L. M.; Bubier, J. L.; Moore, T. R.
  • Global Biogeochemical Cycles, Vol. 13, Issue 1
  • DOI: 10.1029/1998GB900021

Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling: ANAEROBIC OXIDATION OF METHANE IN SOILS
journal, June 2012

  • Blazewicz, Steven J.; Petersen, Dorthe G.; Waldrop, Mark P.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001864

Temperature Sensitivity of Methane Production in the Permafrost Active Layer at Stordalen, Sweden: A Comparison with Non-permafrost Northern Wetlands
journal, November 2012

  • Lupascu, M.; Wadham, J. L.; Hornibrook, E. R. C.
  • Arctic, Antarctic, and Alpine Research, Vol. 44, Issue 4
  • DOI: 10.1657/1938-4246-44.4.469

Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change
journal, February 2008


Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands
journal, September 1995

  • Chanton, Jeffrey P.; Bauer, James E.; Glaser, Paul A.
  • Geochimica et Cosmochimica Acta, Vol. 59, Issue 17
  • DOI: 10.1016/0016-7037(95)00240-Z

Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327