skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint

Abstract

The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSC evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in themore » ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of water on Sandia's site. In addition to describing the installation of the TSC and its integration into the ESIF, this paper focuses on the full heat rejection system simulation program used for hourly analysis of the energy and water consumption of the complete system under varying operating scenarios. A follow-up paper will detail the test results. The evaluation of the TSC's performance at NREL will also determine a path forward at Sandia for possible deployment in a large-scale system not only for data center use but also possibly site wide.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1343488
Report Number(s):
NREL/CP-2C00-66690
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at the 2017 ASHRAE Winter Conference, 28 January - 1 February 2017, Las Vegas, Nevada
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; Thermosyphon Cooler Hybrid System; TCHS; thermosyphon cooler; heat rejection system

Citation Formats

Carter, Thomas, Liu, Zan, Sickinger, David, Regimbal, Kevin, and Martinez, David. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint. United States: N. p., 2017. Web.
Carter, Thomas, Liu, Zan, Sickinger, David, Regimbal, Kevin, & Martinez, David. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint. United States.
Carter, Thomas, Liu, Zan, Sickinger, David, Regimbal, Kevin, and Martinez, David. Wed . "Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint". United States. doi:. https://www.osti.gov/servlets/purl/1343488.
@article{osti_1343488,
title = {Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint},
author = {Carter, Thomas and Liu, Zan and Sickinger, David and Regimbal, Kevin and Martinez, David},
abstractNote = {The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSC evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of water on Sandia's site. In addition to describing the installation of the TSC and its integration into the ESIF, this paper focuses on the full heat rejection system simulation program used for hourly analysis of the energy and water consumption of the complete system under varying operating scenarios. A follow-up paper will detail the test results. The evaluation of the TSC's performance at NREL will also determine a path forward at Sandia for possible deployment in a large-scale system not only for data center use but also possibly site wide.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The National Park Service (NPS) applied a whole-building design process developed at the National Renewable Energy Laboratory (NREL) to create a building that performs more than 70% better than a comparable code-compliant building at no additional construction cost. This whole-building design process involves a committed design team, including the energy consultant, in the earliest conceptual design phase and continues through building commissioning. The design team for this project included the architect, engineer, energy consultant, landscape architect, owner, operator, and others who could influence the building design and operation. Extensive whole-building energy and lighting computer simulations were conducted throughout the process,more » which included the integration of energy efficient and renewable energy technologies into the building. The design team, inspired by natural cooling within the canyon, developed simple solutions to create an extremely energy efficient building. The se strategies included natural ventilation cooling, cooltowers for evaporative cooling without distribution fans, daylighting, massive building materials, Trombe walls and direct solar gains for heating, engineered window overhangs for solar load control, a building automation system to maintain comfort and control the energy-efficient lighting system, and a roof-mounted photovoltaic system to offset building electrical loads and ensure a power supply during the frequent utility grid outages.« less
  • This presentation provides a high-level overview of saving water and operating costs at NREL's High Performance Computing Data Center.
  • Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now with the rise of multimodal acquisition systems and the associated processing capability the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) tomore » perform scalable data analysis and simulation via an intuitive, cross-platform client user interface. This framework delivers authenticated, push-button execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing the converged compute-and-data infrastructure at Oak Ridge National Laboratory s (ORNL) Compute and Data Environment for Science (CADES) and HPC environments like Titan at the Oak Ridge Leadership Computing Facility (OLCF). In this work we address the underlying HPC needs for characterization in the material science community, elaborate how BEAM s design and infrastructure tackle those needs, and present a small sub-set of user cases where scientists utilized BEAM across a broad range of analytical techniques and analysis modes.« less
  • This paper describes the results of the European Union (EU) Benchmarking Project, a 3-year, multi-agency research project to improve the design of renewable-based hybrid power systems based on the analysis of existing systems and the benchmarking of specific system components, most critically batteries. Based on the analysis of hundreds of power systems, efforts were made to classify different categories of similar use and then determine component-specific recommendations that will allow more consistent and longer product life. Based on the classification of different use types, assessments of critical ware factors could be conducted and recommendations of appropriate component selection undertaken. Themore » project results make it possible to match most systems to a use category, thus allowing recommendations to improve project life.« less
  • This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.