skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Price-Concentration Relationship in Early Residential Solar Third-Party Markets

Technical Report ·
DOI:https://doi.org/10.2172/1342827· OSTI ID:1342827
 [1];  [2];  [2];  [2];  [3]
  1. Univ. of Oxford (United Kingdom)
  2. Center for Sustainable Energy, San Francisco, CA (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)

The market for residential solar photovoltaic (PV) systems in the United States has experienced tremendous growth over the past decade, with installed capacity more than doubling between 2014 and 2016 alone (SEIA, 2016). As the residential market continues to grow, it prompts new questions about the nature of competition between solar installers and how this competition, or lack thereof, affects the prices consumers are paying. It is often assumed that more competition leads to lower prices, but this is not universally true. For example, some studies have shown that factors such as brand loyalty could lead to a negative relationship between concentration and price in imperfectly competitive markets (Borenstein, 1985; Holmes, 1989). As such, the relationship between prices and market concentration is an open empirical question since theory could predict either a positive or negative relationship. Determining a relationship between prices and market concentration is challenging for several reasons. Most significantly, prices and market structure are simultaneously determined by each other -- the amount of competition a seller faces influences the price they can command, and prices determine a seller's market share. Previous studies have examined recent PV pricing trends over time and between markets (Davidson et al., 2015a; Davidson and Margolis 2015b; Nemet et al., 2016; Gillingham et al., 2014; Barbose and Darghouth 2015). While these studies of solar PV pricing are able to determine correlations between prices and market factors, they have not satisfactorily proven causation. Thus, to the best of our knowledge, there is little work to date that focuses on identifying the causal relationship between market structure and the prices paid by consumers. We use a unique dataset on third-party owned contract terms for the residential solar PV market in the San Diego Gas and Electricity service territory to better understand this relationship. Surprisingly, we find that firms charged higher prices in more competitive markets in our sample. The finding is robust across multiple definitions of firm concentration. There are at least two potential explanations for our findings. First, firms could be conducting entry deterrence strategies. It is possible that firms are acting in a non-competitive way and setting prices lower than they would be otherwise. Setting low prices that are below potential competitors' marginal costs could deter entrants and ensure a larger market share. Second, there could be a group of dominant firms (with a competitive fringe), and the dominant firms may occasionally engage in price wars. If this is true, prices should be lower in more concentrated markets during the price wars (Salinger, 1990). As the rooftop PV market continues to grow, market structure will remain a relevant policy issue in consideration of the potential for rooftop solar to contribute to de-carbonization efforts or other policy objectives. This paper adds to a growing emphasis on understanding supply-side factors in scaling up solar markets in the residential sector. Generally, solar markets have become more competitive over the same time period that solar technology costs decreased. While solar system hard costs have come down, our research suggests that total costs are more nuanced in early solar system TPO markets. Policymakers should consider these findings when designing markets, and have the data needed to make informed decisions.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1342827
Report Number(s):
NREL/TP-6A20-66784
Country of Publication:
United States
Language:
English