skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1342802
Grant/Contract Number:
FG02- 08ER64640
Resource Type:
Journal Article: Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 114; Journal Issue: 8; Related Information: CHORUS Timestamp: 2018-02-08 05:11:06; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Auffhammer, Maximilian, Baylis, Patrick, and Hausman, Catherine H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. United States: N. p., 2017. Web. doi:10.1073/pnas.1613193114.
Auffhammer, Maximilian, Baylis, Patrick, & Hausman, Catherine H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. United States. doi:10.1073/pnas.1613193114.
Auffhammer, Maximilian, Baylis, Patrick, and Hausman, Catherine H. Mon . "Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States". United States. doi:10.1073/pnas.1613193114.
@article{osti_1342802,
title = {Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States},
author = {Auffhammer, Maximilian and Baylis, Patrick and Hausman, Catherine H.},
abstractNote = {},
doi = {10.1073/pnas.1613193114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 8,
volume = 114,
place = {United States},
year = {Mon Feb 06 00:00:00 EST 2017},
month = {Mon Feb 06 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1073/pnas.1613193114

Citation Metrics:
Cited by: 5works
Citation information provided by
Web of Science

Save / Share:
  • New tools are employed to develop an electricity demand map for the southeastern United States at neighborhood resolution to serve as a baseline from which to project increases in electricity demand due to a rise in global and local temperature and to population shifts motivated by increases in extreme weather events due to climate change. We find that electricity demand increases due to temperature rise over the next 40 years have a much smaller impact than those due to large population influx. In addition, we find evidence that some, sections of the national electrical grid are more adaptable to thesemore » population shifts and changing demand than others are; and that detailed projections of changing local electricity demand patterns are viable and important for planning at the urban level.« less
  • This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, andmore » end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.« less
  • Each winter, hundreds of ice-covered, shallow lakes in the northern US are aerated to prevent winterkill, the death of fish due to oxygen depletion under the ice. How will the projected climate warming influence winterkill and the need to artificially aerate lakes? To answer this question, a deterministic, one-dimensional year-round water quality model, which simulates daily dissolved oxygen (DO) profiles and associated water temperatures as well as ice/snow covers on lakes, was applied. Past and projected climate scenarios were investigated. The lake parameters required as model input are surface area, maximum depth, and Secchi depth as a measure of radiationmore » attenuation and trophic state. The model is driven by daily weather data. Weather records from 209 stations in the contiguous US for the period 1961--1979 were used to represent past climate conditions. The projected climate change due to a doubling of atmospheric CO{sub 2} was obtained from the output of the Canadian Climate Center General Circulation Model. To illustrate the effect of projected climate change on lake DO characteristics, the authors present herein DO information simulated, respectively, with inputs of past climate conditions and with a projected 2 x CO{sub 2} climate scenario, as well as differences of those values. Specific parameters obtained were minimum under-ice and lake bottom DO concentration in winter, duration of under-ice anoxic conditions and low DO conditions, and percentage of anoxic and low DO lake volumes during the ice cover period. Under current climate conditions winterkill occurs typically in shallow eutrophic lakes of the northern contiguous US. Climate warming is projected to eliminate winterkill in these lakes. This would be a positive effect of climate warming. Fish species under ice may still experience periods of stress and zero growth due to low DO conditions under projected climate warming.« less
  • The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating themore » effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less
  • The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating themore » effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less