skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

Abstract

Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which is the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [1];  [3];  [3];  [3];  [1]
  1. Department of Materials Science and Engineering, North Carolina State University, Raleigh North Carolina
  2. Nano-Phononics Lab, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro Tokyo Japan; SCHOTT AG, Hattenberg Straße 10 Mainz Germany
  3. Nano-Phononics Lab, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro Tokyo Japan
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1342704
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of the American Ceramic Society
Additional Journal Information:
Journal Volume: 100; Journal Issue: 4; Journal ID: ISSN 0002-7820
Publisher:
American Ceramic Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; heat treatment; perovskites; x-ray methods

Citation Formats

Hou, Dong, Aksel, Elena, Fancher, Chris M., Usher, Tedi-Marie, Hoshina, Takuya, Takeda, Hiroaki, Tsurumi, Takaaki, and Jones, Jacob L.. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis. United States: N. p., 2017. Web. doi:10.1111/jace.14631.
Hou, Dong, Aksel, Elena, Fancher, Chris M., Usher, Tedi-Marie, Hoshina, Takuya, Takeda, Hiroaki, Tsurumi, Takaaki, & Jones, Jacob L.. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis. United States. doi:10.1111/jace.14631.
Hou, Dong, Aksel, Elena, Fancher, Chris M., Usher, Tedi-Marie, Hoshina, Takuya, Takeda, Hiroaki, Tsurumi, Takaaki, and Jones, Jacob L.. Thu . "Formation of sodium bismuth titanate-barium titanate during solid-state synthesis". United States. doi:10.1111/jace.14631. https://www.osti.gov/servlets/purl/1342704.
@article{osti_1342704,
title = {Formation of sodium bismuth titanate-barium titanate during solid-state synthesis},
author = {Hou, Dong and Aksel, Elena and Fancher, Chris M. and Usher, Tedi-Marie and Hoshina, Takuya and Takeda, Hiroaki and Tsurumi, Takaaki and Jones, Jacob L.},
abstractNote = {Phase formation of sodium bismuth titanate (Na0.5Bi0.5TiO3 or NBT) and its solid solution with barium titanate (BaTiO3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which is the use of nano-TiO2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.},
doi = {10.1111/jace.14631},
journal = {Journal of the American Ceramic Society},
number = 4,
volume = 100,
place = {United States},
year = {Thu Jan 12 00:00:00 EST 2017},
month = {Thu Jan 12 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Graphical abstract: Mechano-synthesis of lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} piezoceramics with nanocrystalline/amorphous structure and homogeneous composition: partial transformation of constituents to BNBT, BNT and pyrochlore, amorphous phase formation, mechano-crystallization of the amorphous, pyrochlore-to-perovskite BNBT phase transformation during the process. Display Omitted Highlights: ► Perovskite BNBT powders with homogeneous composition were synthesized by MA. ► Partial transformation of constituents to BNBT, BNT and pyrochlore occurred by MA. ► Formation of an amorphous phase and afterwards its crystallization occurred by MA. ► Pyrochlore-to-perovskite BNBT phase transformation occurred after prolong milling. ► Polymorphic transformations of TiO{sub 2} act as the mainmore » alloying impediment during MA. -- Abstract: Bismuth–sodium–barium–titanate piezoceramics with a composition of (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} (BNBT) were prepared by mechanical alloying (MA). Structural analysis and phase identification were performed by X-ray diffraction (XRD). Microstructural studies and chemical composition homogeneity were performed by scanning electron microscope (SEM) coupled with energy dispersive X-ray analysis (EDX). Furthermore, thermal properties of the as-milled powders were evaluated by thermogravimetry/differential thermal analysis (TG/DTA). During the initial milling, the constituents were transformed to the perovskite, pyrochlore, and BNT phases; in addition, partial amorphization of the structure appeared during the milling cycle. As MA progressed, transformation of pyrochlore-to-perovskite and crystallization of the amorphous phase occurred and also, the BNBT phase was significantly developed. It was found that the MA process has the ability to synthesize the BNBT powders with a submicron particle size, regular morphology, and uniform elemental distribution.« less
  • In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less
  • BaTiO[sub 3] single crystals were prepared by solid-state grain growth. The single crystals were obtained by seeding a polycrystalline, TiO[sub 2]-excess BaTiO[sub 3], which exhibited abnormal grain growth. The condition for single-crystal growth was essentially dependent on the grain growth behavior of the polycrystalline, sintered bodies. The annealing temperature suitable for the single-crystal growth was just below the critical temperature of abnormal grain growth in TiO[sub 2]-excess BaTiO[sub 3], which is about 1,300 C.
  • Barium Strontium Titanate (Ba{sub 1-x}Sr{sub x}TiO{sub 3}) or BST was prepared by solid state reaction method. Raw materials are BaCO{sub 3}, SrCO{sub 3}, and TiO{sub 2}. Those materials are mixed for 8 h, pressed, and sintered at temperature 1200°C for 2 h. Mole composition of Sr (x) was varied to study its influences on structural, morphological, and electrical properties of BST. Variation of (x) are x = 0; x = 0.1; and x = 0.5. XRD patterns showed a single phase of BST, which mean that mixture of raw materials was homogenous. Crystal structure was influenced by x. BaTiO{sub 3} and Ba{submore » 0.9}Ti{sub 0.1}TiO{sub 3} have tetragonal crystal structure, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is cubic. The diffraction angle shifted to right side (angle larger) as the increases of x. Crystalline size of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3}, and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} are 38.13 nm; 38.62 nm; and 37.13 nm, respectively. SEM images showed that there are still of pores which were influenced by x. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface (pores are few and small in size). Sawyer Tower circuit showed that BaTiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1} TiO{sub 3} is ferroelectric, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is paraelectric. The dielectric constants of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} at frequency of 1 KHz are 156; 196; and 83, respectively. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has relatively highest dielectric constant. It is considered that Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface.« less
  • A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less