skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties

Abstract

Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabled sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.

Authors:
 [1];  [2];  [3];  [2]
  1. Friedrich Schiller Univ. Jena, Jena (Germany); Guizhou Univ., Guiyang (China)
  2. Friedrich Schiller Univ. Jena, Jena (Germany)
  3. Friedrich Schiller Univ. Jena, Jena (Germany); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1342684
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 7; Journal Issue: 7; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Drug-Delivery Graphene Responsive Hollowsphere carrier Drug

Citation Formats

Dong, Fuping, Firkowska-Boden, Izabela, Arras, Matthias M. L., and Jandt, Klaus. D.. Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties. United States: N. p., 2017. Web. doi:10.1039/c6ra25353a.
Dong, Fuping, Firkowska-Boden, Izabela, Arras, Matthias M. L., & Jandt, Klaus. D.. Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties. United States. doi:10.1039/c6ra25353a.
Dong, Fuping, Firkowska-Boden, Izabela, Arras, Matthias M. L., and Jandt, Klaus. D.. Fri . "Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties". United States. doi:10.1039/c6ra25353a. https://www.osti.gov/servlets/purl/1342684.
@article{osti_1342684,
title = {Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties},
author = {Dong, Fuping and Firkowska-Boden, Izabela and Arras, Matthias M. L. and Jandt, Klaus. D.},
abstractNote = {Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabled sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.},
doi = {10.1039/c6ra25353a},
journal = {RSC Advances},
number = 7,
volume = 7,
place = {United States},
year = {Fri Jan 13 00:00:00 EST 2017},
month = {Fri Jan 13 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • In our paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe 3O 4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe 3O 4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag +) loaded in the porous carbon shell and a subsequent replacement ofmore » Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl 4 as a precursor. Moreover, the Fe 3O 4@PC-CDsAu NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe 3O 4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g -1) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe 3O 4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g -1 produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Finally, in benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe 3O 4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.« less
  • In our study, hybrid gold/iron oxide loaded thermoresponsive micelles were synthesized for combined hyperthermia and chemotherapy, and optical imaging. Polymeric micelles made of amphiphilic block copolymer of poly(N-isopropylacrylamide-co-acrylamide)-block-poly({var_epsilon}-caprolactone) were conjugated with gold/iron oxide particles which are self-assembled at the hydrophobic polymer core. Thermal sensitivity and magnetic and optical properties of the hybrid gold/iron oxide micelles were investigated for the combined therapy and optical imaging.
  • A facile ultrasonic horn-assisted reaction has been used to synthesize zinc oxide-reduced graphene oxide (ZnO-RGO) hybrids in dimethylformamide. The incorporation of graphene oxide prevents the cluster formation of ZnO nanoparticles. The photocatalytic performance in degradation of methylene blue has been investigated with ZnO and ZnO-RGO hybrids and the results show that the RGO plays an important role in the enhancement of photocatalytic performance of ZnO-RGO. A direct evidence of electron exchange between ZnO and RGO is confirmed by zeta potentials measurements, which is an established reason for photocatalytic degradation of organic dyes.
  • In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drugmore » carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.« less
  • A hybrid temperature-responsive hydroxyapatite-poly(N-isopropylacrylamide) (HAP-PNIPAAm) gel has been synthesized by the interpenetration of PNIPAAm into a sintered HAP disk through a radical-initiated polymerization of NIPAAm monomers under N2 atmosphere, and shows sustained positive thermo-responsive drug release profile over a month at PBS buffer.