skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of an Integrated Biofuel and Chemical Refinery

Abstract

This project has demonstrated the level of commercial readiness for production of the industrial chemical, 1,4-butanediol (BDO), from lignocellulosic biomass by engineered E. coli. Targets were BDO titer, rate, and yield (TRY) and growth in lignocellulosic hydrolysates (Hz). A range of Hzs were used to assess limitations for biomass-to-BDO. Via adaptive evolution methods, whole-genome sequencing, and introduction of identified target genes, strains co-utilizing C5/ C6 sugars were made. The composition of Hz versus TRY led to a modified Hz composition. This was used in partnership with the DOE to redirect the project to focus on 1) several biomass Hz from new suppliers, 2) Hz specification due to the characteristics of the Genomatica BDO process, 3) a gene cassette to engineer any BDO producing strain for biomass, and 4) modified BDO recovery to more economically recover BDO at industry specifications. BDO TRY and growth of the E. coli strains were predictable based on Hz composition from several suppliers. This defined metrics for biomass Hz composition to achieve BDO TRY along with internal TEA to evaluate the economic potential of each modification to strain, Hz feed, and process. An improved biomass-to-BDO production strain reached BDO T-R in a 30 L fermentation abovemore » original objectives. Yield approached the proposed Y and modifications to BDO recovery were demonstrated. Genomatica is now in the position of being able to incorporate biomass feedstocks into the commercial GENO BDO process.« less

Authors:
 [1];  [1];  [1]
  1. Genomatica, San Diego, CA (United States)
Publication Date:
Research Org.:
Genomatica, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
OSTI Identifier:
1342548
Report Number(s):
DOE-GENO-0005002
DOE Contract Number:
EE0005002
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 09 BIOMASS FUELS; BDO, butanediol, biomass, sugars, co-utilization, fermentation, adaptive evolution, DSP, hydrolysate, Escherichia coli

Citation Formats

Trawick, John, Burk, Mark, and Barton, Nelson. Development of an Integrated Biofuel and Chemical Refinery. United States: N. p., 2017. Web. doi:10.2172/1342548.
Trawick, John, Burk, Mark, & Barton, Nelson. Development of an Integrated Biofuel and Chemical Refinery. United States. doi:10.2172/1342548.
Trawick, John, Burk, Mark, and Barton, Nelson. Mon . "Development of an Integrated Biofuel and Chemical Refinery". United States. doi:10.2172/1342548. https://www.osti.gov/servlets/purl/1342548.
@article{osti_1342548,
title = {Development of an Integrated Biofuel and Chemical Refinery},
author = {Trawick, John and Burk, Mark and Barton, Nelson},
abstractNote = {This project has demonstrated the level of commercial readiness for production of the industrial chemical, 1,4-butanediol (BDO), from lignocellulosic biomass by engineered E. coli. Targets were BDO titer, rate, and yield (TRY) and growth in lignocellulosic hydrolysates (Hz). A range of Hzs were used to assess limitations for biomass-to-BDO. Via adaptive evolution methods, whole-genome sequencing, and introduction of identified target genes, strains co-utilizing C5/ C6 sugars were made. The composition of Hz versus TRY led to a modified Hz composition. This was used in partnership with the DOE to redirect the project to focus on 1) several biomass Hz from new suppliers, 2) Hz specification due to the characteristics of the Genomatica BDO process, 3) a gene cassette to engineer any BDO producing strain for biomass, and 4) modified BDO recovery to more economically recover BDO at industry specifications. BDO TRY and growth of the E. coli strains were predictable based on Hz composition from several suppliers. This defined metrics for biomass Hz composition to achieve BDO TRY along with internal TEA to evaluate the economic potential of each modification to strain, Hz feed, and process. An improved biomass-to-BDO production strain reached BDO T-R in a 30 L fermentation above original objectives. Yield approached the proposed Y and modifications to BDO recovery were demonstrated. Genomatica is now in the position of being able to incorporate biomass feedstocks into the commercial GENO BDO process.},
doi = {10.2172/1342548},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 06 00:00:00 EST 2017},
month = {Mon Feb 06 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • Project Objective was to extend pressure swing adsorption (PSA) technology into previously under-exploited applications such as polyolefin production vent gas recovery and H2 recovery from refinery waste gases containing significant amounts of heavy hydrocarbons, aromatics, or H2S.
  • Monolithic, integrated acoustic wave chemical microsensors are being developed on gallium arsenide (GaAs) substrates. With this approach, arrays of microsensors and the high frequency electronic components needed to operate them reside on a single substrate, increasing the range of detectable analytes, reducing overall system size, minimizing systematic errors, and simplifying assembly and packaging. GaAs is employed because it is both piezoelectric, a property required to produce the acoustic wave devices, and a semiconductor with a mature microelectronics fabrication technology. Many aspects of integrated GaAs chemical sensors have been investigated, including: surface acoustic wave (SAW) sensors; monolithic SAW delay line oscillators;more » GaAs application specific integrated circuits (ASIC) for sensor operation; a hybrid sensor array utilizing these ASICS; and the fully monolithic, integrated SAW array. Details of the design, fabrication, and performance of these devices are discussed. In addition, the ability to produce heteroepitaxial layers of GaAs and aluminum gallium arsenide (AlGaAs) makes possible micromachined membrane sensors with improved sensitivity compared to conventional SAW sensors. Micromachining techniques for fabricating flexural plate wave (FPW) and thickness shear mode (TSM) microsensors on thin GaAs membranes are presented and GaAs FPW delay line and TSM resonator performance is described.« less
  • The magnetically excited flexural plate wave (mag-FPW) device has great promise as a versatile sensor platform. FPW's can have better sensitivity at lower operating frequencies than surface acoustic wave (SAW) devices. Lower operating frequency (< 1 MHz for the FPW versus several hundred MHz to a few GHz for the SAW device) simplifies the control electronics and makes integration of sensor with electronics easier. Magnetic rather than piezoelectric excitation of the FPW greatly simplifies the device structure and processing by eliminating the need for piezoelectric thin films, also simplifying integration issues. The versatile mag-FPW resonator structure can potentially be configuredmore » to fulfill a number of critical functions in an autonomous sensored system. As a physical sensor, the device can be extremely sensitive to temperature, fluid flow, strain, acceleration and vibration. By coating the membrane with self-assembled monolayers (SAMs), or polymer films with selective absorption properties (originally developed for SAW sensors), the mass sensitivity of the FPW allows it to be used as biological or chemical sensors. Yet another critical need in autonomous sensor systems is the ability to pump fluid. FPW structures can be configured as micro-pumps. This report describes work done to develop mag-FPW devices as physical, chemical, and acoustic sensors, and as micro-pumps for both liquid and gas-phase analytes to enable new integrated sensing platform.« less
  • In 1973 it was reported that the treatment of southern pine trees with the herbicide Paraquat could induce lightwood formation with very significant increases in the extractable oleoresins and turpentine fractions. The objectives of this project included the characterization of this phenomenon, development of realistic qualitative and quantitative data on the extent of lightwood formation and the recovery of oleoresin and turpentine fractions. The principal objective was to determine if the yields of oleoresinous products and turpentine justified a stand-alone, economic wood extraction process technology, based on the utilization of whole- or complete-Paraquat-treated pine trees. The application of this technologymore » was considered to be appropriate as a sub-system of an integrated chemical process system wherein ethanol, lignin (or hydrocarbon derivatives), and sugars would be manufactured as co-products. Alternately, such extraction technology could be used as a pre-treatment operation prior to Kraft pulping processing. Yield results tended to be variable. Turpentine increases ranged from 2- to 4-fold on a merchantable bole basis with increases at the site of injection as high as 12-fold. The distribution of the turpentine content in Paraquat-treated trees, as well as for extractives content, decreased to normal background levels at about six feet above the wound site. Oleoresin content increases normally ranged from 2 to 3 fold with a maximum total extractables content (or yield) of about 8% on a dry weight basis. Under current conditions, the phenomenon of lightwood formation in mature trees may best be exploited in pulp process plants.« less