skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities

Abstract

This report draws together activities related to wet and gaseous waste feedstocks into a single document. It enables an amplified focus on feedstocks in the relevant technology and potential markets category. Also, this report helps to inform and support ongoing wet and gaseous resource recovery activities in the Bioenergy Technologies Office (BETO) and in the broader federal space. Historically, the office has identified wet and gaseous waste feedstocks as potentially advantageous, but has not pursued them with a sustained focus. This document seeks to position these waste streams appropriately alongside more traditional feedstocks in BETO efforts.

Authors:
Publication Date:
Research Org.:
EERE Publication and Product Library
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
OSTI Identifier:
1342171
Report Number(s):
DOE/EE-1472
7601
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS

Citation Formats

None, None. Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities. United States: N. p., 2017. Web. doi:10.2172/1342171.
None, None. Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities. United States. doi:10.2172/1342171.
None, None. Mon . "Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities". United States. doi:10.2172/1342171. https://www.osti.gov/servlets/purl/1342171.
@article{osti_1342171,
title = {Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities},
author = {None, None},
abstractNote = {This report draws together activities related to wet and gaseous waste feedstocks into a single document. It enables an amplified focus on feedstocks in the relevant technology and potential markets category. Also, this report helps to inform and support ongoing wet and gaseous resource recovery activities in the Bioenergy Technologies Office (BETO) and in the broader federal space. Historically, the office has identified wet and gaseous waste feedstocks as potentially advantageous, but has not pursued them with a sustained focus. This document seeks to position these waste streams appropriately alongside more traditional feedstocks in BETO efforts.},
doi = {10.2172/1342171},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 09 00:00:00 EST 2017},
month = {Mon Jan 09 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.
  • Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range ofmore » sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.« less
  • This report summarizes the results of a public workshop sponsored by DOE/EERE in Westminster, Colorado, on July 16, 2015. The views and opinions of the workshop attendees, as summarized in this document, do not necessarily reflect those of the United States government or any agency thereof, nor do their employees make any warranty, expressed or implied, or assume any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe upon privately owned rights.
  • The basic concept of the REFABB project was that by genetically engineering the biomass crop switchgrass to produce a natural polymer PHB, which is readily broken down by heating (thermolysis) into the chemical building block crotonic acid, sufficient additional economic value would be added for the grower and processor to make it an attractive business at small scale. Processes for using thermolysis to upgrade biomass to densified pellets (char) or bio-oil are well known and require low capital investment similar to a corn ethanol facility. Several smaller thermolysis plants would then supply the densified biomass, which is easier to handlemore » and transport to a centralized biorefinery where it would be used as the feedstock. Crotonic acid is not by itself a large volume commodity chemical, however, the project demonstrated that it can be used as a feedstock to produce a number of large volume chemicals including butanol which itself is a biofuel target. In effect the project would try to address three key technology barriers, feedstock logistics, feedstock supply and cost effective biomass conversion. This project adds to our understanding of the potential for future biomass biorefineries in two main areas. The first addressed in Task A was the importance and potential of developing an advanced value added biomass feedstock crop. In this Task several novel genetic engineering technologies were demonstrated for the first time. One important outcome was the identification of three novel genes which when re-introduced into the switchgrass plants had a remarkable impact on increasing the biomass yield based on dramatically increasing photosynthesis. These genes also turned out to be critical to increasing the levels of PHB in switchgrass by enabling the plants to fix carbon fast enough to support both plant growth and higher levels of the polymer. Challenges in the critical objective of Task B, demonstrating conversion of the PHB in biomass to crotonic acid at over 90% yield, demonstrated the need to consider up-front the limitations of trying to adopt existing equipment to a task for which subsequent basic research studies indicated it was not suitable. New information was developed in the most complex of the chemical conversions studied, advanced catalysis to make acrylic acid, a chemical used widely to make paints, and this was published in a scientific journal. In regard to the technical effectiveness, the crop science aspects were for the most part remarkably effective in addressing the underlying objectives indicating the soundness of the technical approach. With time, it should be possible to fully develop the advanced biomass biorefinery feedstock. Challenges within the thermolysis step to recover crotonic acid meant that by the end of the project we were not able to demonstrate an economic case based on data from scaled up equipment. Solving this will take further research and development work. As a general statement, the broadest public good is in demonstrating the value of funding a very unique approach to the complex problem of enabling large-scale biomass biorefineries which resulted in significant progress towards the ultimate goal and a clearer understanding of the technical hurdles remaining. Perhaps not surprisingly, some of the broader benefits to the public come from the use of the REFABB project innovations in areas unrelated to the initial objective. It is worth highlighting the breakthrough developments in identifying three single global regulator genes which can be engineered into plants to dramatically increase photosynthesis and carbon capturing ability. These genes have tremendous potential for use in major food crops, in particular corn to enhance grain yield and based on recent findings, increase the root density, a critical key to increasing carbon sequestration in agriculture and improving the sustainability of global food and biofuel production.« less
  • A problem of considerable importance to radiological health and safety in the nuclear energy age is the measurement and evaluation of radioisotopes in waste stream streams discharged from reactors and from fuel reprocessing plants. Several instruments have been developed and applied to gaseous and liquid waste streams to automatically sample, analyze, and record the important isotopes present. Three such instruments are described. A total beta-emitter recording instrument samples a stream ad prepares the sample automatically, presents it to a counter where the sample is counted and the beta particle emission rate recorded. An automatic analyzing monitor was developed which samplesmore » a liquid stream, and analyzes it automaiically for seven isotopes. Isotopes of Na/sup 24/ , Mn/sup 56/, Np/sup 239/, and As/sup 76/ are measured using gamma ray spectrometer methods. Cu/sup 64/ is measured by detecting the annihilation radiation as gamma coincidences. Beta emitters of P/sup 32/ and Si/sup 31/ are determined, after automatic chemical separation, with a proportional counter. Mechanical, chemical, electrical, and electronic features are described. A third instrument analyzes gaseous waste for R/sup 106/, Ru/sup 103/, and I/sup 131/. Gamma ray energy discrimination is utilized as well as continous chemical separations. Radioactive particulate material is differentiated from the pure gaseous and vapor forms of the isotopes of interest. Application of these instruments permits more effective control of rdioactive wastcs dispersed to the environment. (auth)« less