skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical capture and release of carbon dioxide

Abstract

Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO 2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO 2 capture methods involve thermal cycles in which a nucleophilic agent captures CO 2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO 2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO 2 and release it in pure form. These cycles typically rely on electrochemical generation of nucleophiles that attack CO 2 at the electrophilic carbon atom, forming a CO 2 adduct. Then, CO 2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO 2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]
  1. Arizona State Univ., Tempe, AZ (United States)
Publication Date:
Research Org.:
Arizona State Univ., Tempe, AZ (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1341908
Alternate Identifier(s):
OSTI ID: 1345211
Grant/Contract Number:
AR0000343
Resource Type:
Journal Article: Published Article
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 2; Journal Issue: 2; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Rheinhardt, Joseph H., Singh, Poonam, Tarakeshwar, Pilarisetty, and Buttry, Daniel A. Electrochemical capture and release of carbon dioxide. United States: N. p., 2017. Web. doi:10.1021/acsenergylett.6b00608.
Rheinhardt, Joseph H., Singh, Poonam, Tarakeshwar, Pilarisetty, & Buttry, Daniel A. Electrochemical capture and release of carbon dioxide. United States. doi:10.1021/acsenergylett.6b00608.
Rheinhardt, Joseph H., Singh, Poonam, Tarakeshwar, Pilarisetty, and Buttry, Daniel A. Wed . "Electrochemical capture and release of carbon dioxide". United States. doi:10.1021/acsenergylett.6b00608.
@article{osti_1341908,
title = {Electrochemical capture and release of carbon dioxide},
author = {Rheinhardt, Joseph H. and Singh, Poonam and Tarakeshwar, Pilarisetty and Buttry, Daniel A.},
abstractNote = {Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO2 capture methods involve thermal cycles in which a nucleophilic agent captures CO2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO2 and release it in pure form. These cycles typically rely on electrochemical generation of nucleophiles that attack CO2 at the electrophilic carbon atom, forming a CO2 adduct. Then, CO2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.},
doi = {10.1021/acsenergylett.6b00608},
journal = {ACS Energy Letters},
number = 2,
volume = 2,
place = {United States},
year = {Wed Jan 18 00:00:00 EST 2017},
month = {Wed Jan 18 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1021/acsenergylett.6b00608

Save / Share:
  • Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO 2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO 2 capture methods involve thermal cycles in which a nucleophilic agent captures CO 2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO 2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO 2 and release it in pure form. These cycles typically rely on electrochemical generation ofmore » nucleophiles that attack CO 2 at the electrophilic carbon atom, forming a CO 2 adduct. Then, CO 2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO 2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.« less
  • FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuelmore » power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ≥ 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.« less
  • Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory’s MiniCAM model to perform an integrated economic analysis ofmore » the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.« less
  • The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO{sub 2}) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO{sub 2} capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO{sub 2} absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermalmore » gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO{sub 2} absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation. 30 refs., 8 figs.« less