skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

Abstract

Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co 3O 4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co 3O 4 nanoplatelet morphology while the spherical/cubic Co 3O 4 and Ni 0.15Co 2.85O 4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.

Authors:
 [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1341751
Report Number(s):
SAND-2017-0770J
Journal ID: ISSN 1938-6737; 650698
Grant/Contract Number:
AC04-94AL85000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ECS Transactions (Online)
Additional Journal Information:
Journal Name: ECS Transactions (Online); Journal Volume: 75; Journal Issue: 14; Journal ID: ISSN 1938-6737
Publisher:
Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 30 DIRECT ENERGY CONVERSION

Citation Formats

Lambert, Timothy N., Vigil, Julian A., and Christensen, Ben. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting. United States: N. p., 2016. Web. doi:10.1149/07514.1137ecst.
Lambert, Timothy N., Vigil, Julian A., & Christensen, Ben. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting. United States. doi:10.1149/07514.1137ecst.
Lambert, Timothy N., Vigil, Julian A., and Christensen, Ben. 2016. "Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting". United States. doi:10.1149/07514.1137ecst. https://www.osti.gov/servlets/purl/1341751.
@article{osti_1341751,
title = {Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting},
author = {Lambert, Timothy N. and Vigil, Julian A. and Christensen, Ben},
abstractNote = {Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.},
doi = {10.1149/07514.1137ecst},
journal = {ECS Transactions (Online)},
number = 14,
volume = 75,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance hasmore » been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.« less
  • The design of active, robust, and nonprecious electrocatalysts with both H 2 and O 2 evolution reaction (HER and OER) activities for overall water splitting is highly desirable but remains a grand challenge. Here in this article, we report a facile two-step method to synthesize porous Co-P/NC nanopolyhedrons composed of CoP x (a mixture of CoP and Co 2P) nanoparticles embedded in N-doped carbon matrices as electrocatalysts for overall water splitting. The Co-P/NC catalysts were prepared by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Benefiting from the large specific surface area, controllable pore texture, and highmore » nitrogen content of ZIF (a subclass of metal–organic frameworks), the optimal Co-P/NC showed high specific surface area of 183 m 2 g -1 and large mesopores, and exhibited remarkable catalytic performance for both HER and OER in 1.0 M KOH, affording a current density of 10 mA cm -2 at low overpotentials of -154 mV for HER and 319 mV for OER, respectively. Furthermore, a Co-P/NC-based alkaline electrolyzer approached 165 mA cm -2 at 2.0 V, superior to that of Pt/IrO 2 couple, along with strong stability. Various characterization techniques including X-ray absorption spectroscopy (XAS) revealed that the superior activity and strong stability of Co-P/NC originated from its 3D interconnected mesoporosity with high specific surface area, high conductivity, and synergistic effect of CoP x encapsulated within N-doped carbon matrices.« less
  • Finely controlled synthesis of high active and robust nonprecious metal catalysts with excellent catalytic efficiency in oxygen evolution reaction (OER) is extremely vital for making the water splitting process more energy-efficient and economical. Among these noble metal-free catalysts, transition-metal-based nanomaterials are considered as one of the most promising OER catalysts due to their relatively low-cost intrinsic activities, high abundance and diversity in terms of structure and morphology. In this work, we reported a facile sugar-blowing technique and low-temperature phosphorization to generate 3D self-supported metal involved carbon nanostructures, which termed as Co2P@Co/nitrogen-doped carbon (Co2P@Co/N-C). By capitalizing on the 3D porous nanostructuresmore » with high surface area, generously dispersed active sites, the intimate interaction between active sites and 3D N-doped carbon, the resultant Co2P@Co/N-C exhibited satisfying OER performance superior to CoO@Co/N-C, delivering 10 mA cm-2 at overpotential of 0.32 V. It is noting that in contrast to the substantial current density loss of RuO2, Co2P@Co/N-C showed much enhanced catalytic activity during the stability test and the 1.8-fold increase in current density was observed after stability test. Furthermore, the obtained Co2P@Co/N-C can also be served as an excellent nonprecious metal catalyst for methanol and glucose electrooxidation in alkaline media, further extending their potential applications.« less