skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

Abstract

Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement alsomore » increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. Lastly, it was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.« less

Authors:
 [1];  [2];  [2];  [1];  [1];  [1];  [3];  [4];  [5];  [5];  [5];  [1];  [2];  [6];  [2]
  1. Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); National Oceanic and Atmospheric Administration, Boulder, CO (United States)
  2. National Oceanic and Atmospheric Administration, Boulder, CO (United States)
  3. Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States)
  5. Univ. of Texas at Dallas, Richardson, TX (United States)
  6. National Center for Atmospheric Research, Boulder, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1341344
Alternate Identifier(s):
OSTI ID: 1344326
Report Number(s):
NREL/JA-5000-67999
Journal ID: ISSN 1867-8548
Grant/Contract Number:
AC36-08GO28308; SC0011561
Resource Type:
Journal Article: Published Article
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online); Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 1867-8548
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; eXperimental Planetary boundary layer Instrumentation Assessment; XPIA; wind flow fields; flow modeling

Citation Formats

Choukulkar, Aditya, Brewer, W. Alan, Sandberg, Scott P., Weickmann, Ann, Bonin, Timothy A., Hardesty, R. Michael, Lundquist, Julie K., Delgado, Ruben, Iungo, G. Valerio, Ashton, Ryan, Debnath, Mithu, Bianco, Laura, Wilczak, James M., Oncley, Steven, and Wolfe, Daniel. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. United States: N. p., 2017. Web. doi:10.5194/amt-10-247-2017.
Choukulkar, Aditya, Brewer, W. Alan, Sandberg, Scott P., Weickmann, Ann, Bonin, Timothy A., Hardesty, R. Michael, Lundquist, Julie K., Delgado, Ruben, Iungo, G. Valerio, Ashton, Ryan, Debnath, Mithu, Bianco, Laura, Wilczak, James M., Oncley, Steven, & Wolfe, Daniel. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. United States. doi:10.5194/amt-10-247-2017.
Choukulkar, Aditya, Brewer, W. Alan, Sandberg, Scott P., Weickmann, Ann, Bonin, Timothy A., Hardesty, R. Michael, Lundquist, Julie K., Delgado, Ruben, Iungo, G. Valerio, Ashton, Ryan, Debnath, Mithu, Bianco, Laura, Wilczak, James M., Oncley, Steven, and Wolfe, Daniel. Mon . "Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign". United States. doi:10.5194/amt-10-247-2017.
@article{osti_1341344,
title = {Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign},
author = {Choukulkar, Aditya and Brewer, W. Alan and Sandberg, Scott P. and Weickmann, Ann and Bonin, Timothy A. and Hardesty, R. Michael and Lundquist, Julie K. and Delgado, Ruben and Iungo, G. Valerio and Ashton, Ryan and Debnath, Mithu and Bianco, Laura and Wilczak, James M. and Oncley, Steven and Wolfe, Daniel},
abstractNote = {Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. Lastly, it was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.},
doi = {10.5194/amt-10-247-2017},
journal = {Atmospheric Measurement Techniques (Online)},
number = 1,
volume = 10,
place = {United States},
year = {Mon Jan 23 00:00:00 EST 2017},
month = {Mon Jan 23 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.5194/amt-10-247-2017

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scanmore » geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. Lastly, it was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.« less
  • In March and April of 2015, the ARM Doppler lidar that was formerly operated at the Tropical Western Pacific site in Darwin, Australia (S/N 0710-08) was deployed to the Boulder Atmospheric Observatory (BAO) for the eXperimental Planetary boundary-layer Instrument Assessment (XPIA) field campaign. The goal of the XPIA field campaign was to investigate methods of using multiple Doppler lidars to obtain high-resolution three-dimensional measurements of winds and turbulence in the atmospheric boundary layer, and to characterize the uncertainties in these measurements. The ARM Doppler lidar was one of many Doppler lidar systems that participated in this study. During XPIA themore » 300-m tower at the BAO site was instrumented with well-calibrated sonic anemometers at six levels. These sonic anemometers provided highly accurate reference measurements against which the lidars could be compared. Thus, the deployment of the ARM Doppler lidar during XPIA offered a rare opportunity for the ARM program to characterize the uncertainties in their lidar wind measurements. Results of the lidar-tower comparison indicate that the lidar wind speed measurements are essentially unbiased (~1cm s-1), with a random error of approximately 50 cm s-1. Two methods of uncertainty estimation were tested. The first method was found to produce uncertainties that were too low. The second method produced estimates that were more accurate and better indicators of data quality. As of December 2015, the first method is being used by the ARM Doppler lidar wind value-added product (VAP). One outcome of this work will be to update this VAP to use the second method for uncertainty estimation.« less
  • The synthesis of new measurement technologies with advances in high performance computing provides an unprecedented opportunity to advance our understanding of the atmosphere, particularly with regard to the complex flows in the atmospheric boundary layer. To assess current measurement capabilities for quantifying features of atmospheric flow within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment design, highlight novel approaches to boundary-layer measurements, and quantify measurement uncertainties associated with these experimental methods. Line-of-sight velocities measured bymore » scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or dual radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes,conducted with rapid lidar scans, agree with those from scanning radars, enabling assessment of spatial variability. Microwave radiometers provide temperature profiles within and above the boundary layer with approximately the same uncertainty as operational remote sensing measurements. Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. Finally, we highlight cases that could be useful for validation of large-eddy simulations or mesoscale numerical weather prediction, providing information on accessing the archived dataset. We conclude that modern remote Lundquist et al. XPIA BAMS Page 4 of 81 sensing systems provide a generational improvement in observational capabilities, enabling resolution of refined processes critical to understanding 61 inhomogeneous boundary-layer flows such as those found in wind farms.« less
  • To assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of windsmore » over volumes from scanning lidars and radars are in close agreement, enabling assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipitation events, but they struggle at times to provide data during periods with limited atmospheric scatterers. In contrast, for the deployment geometry tested here, the lidars have slower scan rates and less range, but provide more data during non-precipitating atmospheric conditions. Microwave radiometers provide temperature profiles with approximately the same uncertainty as Radio-Acoustic Sounding Systems (RASS). Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. As a result, we highlight cases for validation of mesoscale or large-eddy simulations, providing information on accessing the archived dataset. We conclude that modern remote sensing systems provide a generational improvement in observational capabilities, enabling resolution of fine-scale processes critical to understanding inhomogeneous boundary-layer flows.« less
  • Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds showmore » that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.« less