skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory

Abstract

Los Alamos National Security, LLC (LANS) biologists in the Environmental Compliance and Protection Division at Los Alamos National Laboratory (LANL) initiated a multi-year program in 2013 to monitor avifauna at two open detonation sites and one open burn site on LANL property. Monitoring results from these efforts are compared among years and with avifauna monitoring conducted at other areas across LANL. The objectives of this study are to determine whether LANL firing site operations impact bird abundance or diversity. LANS biologists completed the fourth year of this effort in 2016. The overall results from 2016 continue to indicate that operations are not negatively affecting bird populations. Data suggest that community structure may be changing at some sites and this trend will continue to be monitored.

Authors:
 [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1340948
Report Number(s):
LA-UR-17-20359
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Biological resources; Earth Sciences; Environmental Protection

Citation Formats

Hathcock, Charles Dean, Thompson, Brent E., and Berryhill, Jesse Tobias. 2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory. United States: N. p., 2017. Web. doi:10.2172/1340948.
Hathcock, Charles Dean, Thompson, Brent E., & Berryhill, Jesse Tobias. 2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory. United States. doi:10.2172/1340948.
Hathcock, Charles Dean, Thompson, Brent E., and Berryhill, Jesse Tobias. Mon . "2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory". United States. doi:10.2172/1340948. https://www.osti.gov/servlets/purl/1340948.
@article{osti_1340948,
title = {2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory},
author = {Hathcock, Charles Dean and Thompson, Brent E. and Berryhill, Jesse Tobias},
abstractNote = {Los Alamos National Security, LLC (LANS) biologists in the Environmental Compliance and Protection Division at Los Alamos National Laboratory (LANL) initiated a multi-year program in 2013 to monitor avifauna at two open detonation sites and one open burn site on LANL property. Monitoring results from these efforts are compared among years and with avifauna monitoring conducted at other areas across LANL. The objectives of this study are to determine whether LANL firing site operations impact bird abundance or diversity. LANS biologists completed the fourth year of this effort in 2016. The overall results from 2016 continue to indicate that operations are not negatively affecting bird populations. Data suggest that community structure may be changing at some sites and this trend will continue to be monitored.},
doi = {10.2172/1340948},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 23 00:00:00 EST 2017},
month = {Mon Jan 23 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • Field mice (mostly Peromyscus spp.) were collected at two open-detonation (high explosive) firing sites - Minie at Technical Area (TA) 36 and Point 6 at TA-39 - at Los Alamos National Laboratory in August of 2010 and in February of 2011 for chemical analysis. Samples of whole body field mice from both sites were analyzed for target analyte list elements (mostly metals), dioxin/furans, polychlorinated biphenyl congeners, high explosives, and perchlorate. In addition, uranium isotopes were analyzed in a composite sample collected from TA-36 Minie. In general, all constituents, with the exception of lead at TA-39 Point 6, in whole bodymore » field mice samples collected from these two open-detonation firing sites were either not detected or they were detected below regional statistical reference levels (99% confidence level), biota dose screening levels, and/or soil ecological chemical screening levels. The amount of lead in field mice tissue collected from TA-39 Point 6 was higher than regional background, and some lead levels in the soil were higher than the ecological screening level for the field mouse; however, these levels are not expected to affect the viability of the populations over the site as a whole.« less
  • This technical paper presents the most recent and updated catalog of earthquakes measured by the Los Alamos Seismic Network at and around Los Alamos National Laboratory (LANL), with specific focus on the site of the proposed transuranic waste facility (TWF) at Technical Area 63 (TA-63). Any questions about the data presented herein, or about the Los Alamos Seismic Network, should be directed to the authors of this technical paper. LANL and the Los Alamos townsite sit atop the Pajarito Plateau, which is bounded on its western edge by the Pajarito fault system, a 35-mile-long system locally comprised of the down-to-the-eastmore » Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos, and is potentially seismogenic (e.g., Gardner et al., 2001; Reneau et al., 2002; Lewis et al., 2009). The proposed TWF area at TA-63 is situated on an unnamed mesa in the north-central part of LANL between Twomile Canyon to the south, Ten Site Canyon to the north, and the headwaters of Canada del Buey to the east (Figure 2). The local bedrock is the Quaternary Bandelier Tuff, formed in two eruptive pulses from nearby Valles caldera, the eastern edge of which is located approximately 6.5 miles west-northwest of the technical area. The older member (Otowi Member) of the Bandelier Tuff has been dated at 1.61 Ma (Izett and Obradovich 1994). The younger member (Tshirege Member) of the Bandelier Tuff has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Several discrete cooling units comprise the Tshirege Member. Commonly accepted stratigraphic nomenclature for the Tshirege Member is described in detail by Broxton and Reneau (1995), Gardner et al. (2001), and Lewis et al. (2009). The Tshirege Member cooling unit exposed at the surface at TA-63 is Qbt3. Understanding the subtle differences between Tshirege Member cooling units and the nature of the contacts between cooling units is critical to identifying the presence or absence of faults associated with the Pajarito fault system on the Pajarito Plateau. The Los Alamos Seismic Network (LASN) continuously monitors local earthquake activity in the Los Alamos area in support of LANL's Seismic Hazards program. Seismic monitoring of LANL facilities is a requirement of DOE Order 420.1B (Facility Safety). LASN currently consists of nine permanent seismic instrument field stations that telemeter real-time sensitive ground motion data to a central recording facility. Four of these stations are located on LANL property, with three of those within 2.5 miles of TA-63. The other five stations are in remote locations in the Jemez Mountains, Valles Caldera, St Peters Dome, and the Caja del Rio plateau across the Rio Grande from the Los Alamos area. Local earthquakes are defined as those with locations within roughly 100 miles of Los Alamos. Plate 1 shows the current LASN station locations and all local earthquakes recorded from 1973 through 2011. During this time period, LASN has detected and recorded over 850 local earthquakes in north-central New Mexico. Over 650 of these were located within about 50 miles of Los Alamos, and roughly 60 were within 10 miles. The apparent higher density of earthquakes close to Los Alamos, relative to the rest of north-central New Mexico, is due largely to the fact that LASN is a sensitive local seismic network, recording many very small nearby events (magnitude less than 1.0) that are undetectable at greater distances.« less