skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

Abstract

One of the most promising means to increase the energy density of state-of-the-art lithium (Li)-ion batteries is to replace the graphite anode with a Li metal anode1, 2, 3. While the direct use of Li metal may be highly advantageous4,5, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency (CE)6. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H 2O as an additive results in remarkably different deposition/stripping properties as compared to the "dry" electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. Here, the stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the directmore » use of Li metal in battery technologies.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [1];  [1];  [3];  [4]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Florida State Univ., Tallahassee, FL (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pennsylvania State Univ., University Park, PA (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1340836
Report Number(s):
PNNL-SA-120401
Journal ID: ISSN 2045-2322; 48681; KC0208010
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Environmental Molecular Sciences Laboratory

Citation Formats

Mehdi, B. Layla, Stevens, Andrew, Qian, Jiangfeng, Park, Chiwoo, Xu, Wu, Henderson, Wesley A., Zhang, Ji -Guang, Mueller, Karl T., and Browning, Nigel D. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries. United States: N. p., 2016. Web. doi:10.1038/srep34267.
Mehdi, B. Layla, Stevens, Andrew, Qian, Jiangfeng, Park, Chiwoo, Xu, Wu, Henderson, Wesley A., Zhang, Ji -Guang, Mueller, Karl T., & Browning, Nigel D. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries. United States. https://doi.org/10.1038/srep34267
Mehdi, B. Layla, Stevens, Andrew, Qian, Jiangfeng, Park, Chiwoo, Xu, Wu, Henderson, Wesley A., Zhang, Ji -Guang, Mueller, Karl T., and Browning, Nigel D. Wed . "The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries". United States. https://doi.org/10.1038/srep34267. https://www.osti.gov/servlets/purl/1340836.
@article{osti_1340836,
title = {The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries},
author = {Mehdi, B. Layla and Stevens, Andrew and Qian, Jiangfeng and Park, Chiwoo and Xu, Wu and Henderson, Wesley A. and Zhang, Ji -Guang and Mueller, Karl T. and Browning, Nigel D.},
abstractNote = {One of the most promising means to increase the energy density of state-of-the-art lithium (Li)-ion batteries is to replace the graphite anode with a Li metal anode1, 2, 3. While the direct use of Li metal may be highly advantageous4,5, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency (CE)6. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the "dry" electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. Here, the stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies.},
doi = {10.1038/srep34267},
url = {https://www.osti.gov/biblio/1340836}, journal = {Scientific Reports},
issn = {2045-2322},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Minimum Cost Multi-Way Data Association for Optimizing Multitarget Tracking of Interacting Objects
journal, March 2015


Direction-Specific Interactions Control Crystal Growth by Oriented Attachment
journal, May 2012


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Characterization of Lithium Electrode in Lithium Imides/Ethylene Carbonate, and Cyclic Ether Electrolytes
journal, January 2004


Electron microscopy of specimens in liquid
journal, October 2011


Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by in Situ Transmission Electron Microscopy
journal, February 2014


Challenges for Rechargeable Li Batteries
journal, February 2010


Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate
journal, January 2002


Issues and challenges facing rechargeable lithium batteries
journal, November 2001


Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014


Controlled Growth of Nanoparticles from Solution with In Situ Liquid Transmission Electron Microscopy
journal, July 2011


Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
journal, June 2009


Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate
journal, December 2013


Electron microscopy of whole cells in liquid with nanometer resolution
journal, January 2009


Advances in Li–S batteries
journal, January 2010


Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014


In situ scanning vibrating electrode technique for lithium metal anodes
journal, October 1997


New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries
journal, February 2013


In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles
journal, September 2014


Li–O2 and Li–S batteries with high energy storage
journal, January 2012


Dendrite Growth in Lithium/Polymer Systems
journal, January 2003


Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive
journal, July 2015


In Situ Transmission Electron Microscopy of Lead Dendrites and Lead Ions in Aqueous Solution
journal, June 2012


Behavior of lithium/electrolyte interface in organic solutions
journal, March 1993


High rate and stable cycling of lithium metal anode
journal, February 2015


    Works referencing / citing this record:

    Using polyoxometalates to enhance the capacity of lithium–oxygen batteries
    journal, January 2018


    Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments
    journal, January 2017


    Using polyoxometalates to enhance the capacity of lithium–oxygen batteries
    journal, January 2018


    Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments
    journal, January 2017


    Elektrolytadditive für Lithiummetallanoden und wiederaufladbare Lithiummetallbatterien: Fortschritte und Perspektiven
    journal, October 2018


    Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives
    journal, October 2018


    Monitoring chemical reactions in liquid media using electron microscopy
    journal, September 2019


    Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
    journal, January 2017


    Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
    journal, January 2018


    Liquid cell transmission electron microscopy and its applications
    journal, January 2020