skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Joint Experimental and Computational Study of the Negative Ion Photoelectron Spectroscopy of the 1-Phospha-2,3,4-triazolate Anion, HCPN 3

Abstract

We report here the results of a combined experimental and computational study of the negative ion photoelectron spectroscopy (NIPES) of the recently synthesized, planar, aromatic, HCPN3– ion. The adiabatic electron detachment energy of HCPN3– (electron affinity of HCPN3•) was measured to be 3.555 ± 0.010 eV, a value that is intermediate between the electron detachment energies of the closely related (CH)2N3– and P2N3– ions. High level electronic structure calculations and Franck–Condon factor (FCF) simulations reveal that transitions from the ground state of the anion to two nearly degenerate, low-lying, electronic states, of the neutral HCPN3• radical are responsible for the congested peaks at low binding energies in the NIPE spectrum. The best fit of the simulated NIPE spectrum to the experimental spectrum indicates that the ground state of HCPN3• is a 5π-electron 2A" π radical state, with a 6π-electron, 2A', σ radical state being at most ~1.0 kcal/mol higher in energy. This assignment contrasts with our recent finding that the ground state of P2N3• is a 6π-electron σ radical state

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1340802
Report Number(s):
PNNL-SA-118787
Journal ID: ISSN 1089-5639; 49062; KC0301050
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory; Journal Volume: 120; Journal Issue: 31
Country of Publication:
United States
Language:
English
Subject:
Environmental Molecular Sciences Laboratory

Citation Formats

Hou, Gao-Lei, Chen, Bo, Transue, Wesley J., Hrovat, David A., Cummins, Christopher C., Borden, Weston Thatcher, and Wang, Xue-Bin. A Joint Experimental and Computational Study of the Negative Ion Photoelectron Spectroscopy of the 1-Phospha-2,3,4-triazolate Anion, HCPN 3 –. United States: N. p., 2016. Web. doi:10.1021/acs.jpca.6b06343.
Hou, Gao-Lei, Chen, Bo, Transue, Wesley J., Hrovat, David A., Cummins, Christopher C., Borden, Weston Thatcher, & Wang, Xue-Bin. A Joint Experimental and Computational Study of the Negative Ion Photoelectron Spectroscopy of the 1-Phospha-2,3,4-triazolate Anion, HCPN 3 –. United States. doi:10.1021/acs.jpca.6b06343.
Hou, Gao-Lei, Chen, Bo, Transue, Wesley J., Hrovat, David A., Cummins, Christopher C., Borden, Weston Thatcher, and Wang, Xue-Bin. 2016. "A Joint Experimental and Computational Study of the Negative Ion Photoelectron Spectroscopy of the 1-Phospha-2,3,4-triazolate Anion, HCPN 3 –". United States. doi:10.1021/acs.jpca.6b06343.
@article{osti_1340802,
title = {A Joint Experimental and Computational Study of the Negative Ion Photoelectron Spectroscopy of the 1-Phospha-2,3,4-triazolate Anion, HCPN 3 –},
author = {Hou, Gao-Lei and Chen, Bo and Transue, Wesley J. and Hrovat, David A. and Cummins, Christopher C. and Borden, Weston Thatcher and Wang, Xue-Bin},
abstractNote = {We report here the results of a combined experimental and computational study of the negative ion photoelectron spectroscopy (NIPES) of the recently synthesized, planar, aromatic, HCPN3– ion. The adiabatic electron detachment energy of HCPN3– (electron affinity of HCPN3•) was measured to be 3.555 ± 0.010 eV, a value that is intermediate between the electron detachment energies of the closely related (CH)2N3– and P2N3– ions. High level electronic structure calculations and Franck–Condon factor (FCF) simulations reveal that transitions from the ground state of the anion to two nearly degenerate, low-lying, electronic states, of the neutral HCPN3• radical are responsible for the congested peaks at low binding energies in the NIPE spectrum. The best fit of the simulated NIPE spectrum to the experimental spectrum indicates that the ground state of HCPN3• is a 5π-electron 2A" π radical state, with a 6π-electron, 2A', σ radical state being at most ~1.0 kcal/mol higher in energy. This assignment contrasts with our recent finding that the ground state of P2N3• is a 6π-electron σ radical state},
doi = {10.1021/acs.jpca.6b06343},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 31,
volume = 120,
place = {United States},
year = 2016,
month = 8
}
  • Negative ion photoelectron (NIPE) spectra of the radical anion of meta-benzoquinone (MBQ, m-OC6H4O) have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show well-resolved peaks and complex spectral patterns. The electron affinity of MBQ is determined from the first resolved peak to be 2.875 ±17 0.010 eV. Single-point, CASPT2/aug-cc-pVTZ//CASPT2/ aug-cc-pVDZ calculations predict accurately the positions of the 0-0 bands in the NIPE spectrum for formation of the four lowest electronic states of neutral MBQ from the 2A2 state of MBQ•-. In addition, the Franck-Condon factors that are computed from the CASPT2/aug-cc-pVDZmore » optimized geometries,vibrational frequencies, and normal mode vectors, successfully simulate the intensities and frequencies of the vibrational peaks in the NIPE spectrum that are associated with each of these electronic states. The successful simulation of the NIPE spectrum of MBQ•- allows the assignment of 3B2 as the ground state of MBQ, followed by the 1B2 and 1A1 electronic states, respectively 9.0 ± 0.2 and 16.6 ± 0.2 kcal/mol higher in energy than the triplet. These experimental energy differences are in good agreement with the calculated values of 9.7 and 15.7 kcal/mol. The relative energies of these two singlet states in MBQ confirm the previous prediction that their relative energies would be reversed from those in meta-benzoquinodimethane (MBQDM, m-CH2C6H4CH2).« less
  • Negative Ion Photoelectron (NIPE) spectra of the radical anion of cyclopropane-1,2,3-trione, (CO)3•-, have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show broadened bands, due to the short lifetimes of both the singlet and triplet states of (CO)3. The smaller intensity of the band with the lower electron binding energy suggests that the singlet is the ground state of (CO)3. From the NIPE spectra, the electron affinity (EA) and the singlet-triplet energy gap of (CO)3 are estimated to be, respectively, EA = 3.1 ± 0.1 eV and ΔEST = -14 ±more » 3 kcal/mol. High-level, (U)CCSD(T)/aug-cc-pVQZ//(U)CCSD(T)/aug-cc-pVTZ, calcu-lations give EA = 3.04 eV for the 1A1´ ground state of (CO)3 and ΔEST = -13.8 kcal/mol for the energy gap between the 1A1´ and 3A2 states, in excellent agreement with values from the NIPE spectra. In addition, simulations of the vibrational structures for formation of these states of (CO)3 from the 2A2'' state of (CO)3•- provide a good fit to the shapes of broad bands in the 266 nm NIPE spectrum. The NIPE spectrum of (CO)3•- and the analysis of the spectrum by high-quality electronic structure calculations demonstrate that NIPES can not only access and provide information about transition structures, but NIPES can also access and provide information about hilltops on potential energy surfaces.« less
  • We report the study of microsolvated CN-(H2O)n (n = 1-5) clusters in the gas phase using a combination of experimental and computational approaches. The hydrated cyanide clusters were produced by electrospray and their structural and energetic properties were probed using temperature-controlled photoelectron spectroscopy (PES) and ab initio electronic structure calculations. Comparison between the low temperature (T = 12 K) and the room-temperature (RT) spectra shows a 0.25 eV spectral blue shift in the binding energy of the n = 1 cluster and a significant spectral sharpening and blue shift for n = 2 and 3. The experimental results are complementedmore » with ab initio electronic structure calculations at the MP2 and CCSD(T) levels of theory that identified several isomers on the ground state potential energy function (PEF) arising from the ability of CN- to form hydrogen bonds with water via both the C and N ends. In all cases the N end seems to be the preferred hydration site. The excellent agreement between the low temperature measured PES spectra and the basis set- and correlation-corrected (at the CCSD(T) level of theory) calculated vertical detachment energies, viz. 3.85 vs. 3.84 eV (n = 0), 4.54 vs. 4.54 eV (n = 1), 5.20 vs. 5.32 eV (n = 2), 5.58 vs. 5.50 eV (n = 3) and 5.89 vs. 5.87 eV (n = 4), allow us to firmly establish the global minimum structures for all the hydrated cyanide clusters. The microsolvation pattern was found to be similar to the halide anions (Cl-, Br- and I-), adopting structures in which CN- resides on the surface of a water network. While at T = 12 K the clusters adopt structures that are close to the minimum energy configurations, at room temperature it is expected that other isomers (lying within ~0.6 kcal/mol above the global minima) are also populated, resulting in the broadening of the PES spectra.« less
  • Cyclobutane-1,2,3,4-tetrathione, (CS)4, has recently been calculated to have a singlet ground state, 1A1g, in which the highest b2g MO is doubly occupied and the lowest a2u MO is empty. Thus, (CS)4 is predicted to have a different ground state than its lighter congener, (CO)4, which has a triplet ground state, 3B1u, in which these two MOs are each singly occupied. Here we report the results of a negative ion photoelectron spectroscopy (NIPES) study of the radical anion (CS)4∙-, designed to test the prediction that (CS)4 has a singlet ground state. The NIPE spectrum reveals that (CS)4 does, indeed, have amore » singlet ground state with electron affinity (EA) = 3.75 eV. The lowest triplet state is found to lie 0.31 eV higher in energy than the ground state, and the open-shell singlet is 0.14 eV higher in energy than the triplet state. Calculations at the (U)CCSD(T)/aug-cc-pVTZ//(U)B3LYP/6-311+G(2df) level support the spectral assignments, giving EA = 3.71 eV, EST = 0.44 eV. These calculated values are, respectively, 0.04 eV (0.9 kcal/mol) smaller, and 0.13 eV (3.0 kcal/mol) larger than the corresponding experimental values. In addition, RASPT2 calculations with various active spaces converge on a 1B1u-3B1u energy gap of 0.137 eV, in excellent agreement with the 0.14 eV energy difference obtained from the NIPE spectrum. Finally, calculations of the Franck-Condon factors for transitions from the ground state of (CS)4∙- to the ground (1A1g) and two excited states (3B1u, 1B1u) of (CS)4 account for all of the major spectral peaks, and nicely reproduce vibrational structure observed in each electronic transition. The close correspondence between the calculated and the observed features in the NIPE spectrum of (CS)4∙- provides unequivocal proof that (CS)4, unlike (CO)4, has a singlet ground state.« less
  • We report a photoelectron spectroscopy and computational study of two simple boron oxide species: BO– and BO2–. Vibrationally-resolved photoelectron spectra are obtained at several photon energies (355, 266, 193, and 157 nm) for the 10B isotopomers, 10BO– and 10BO2–. In the spectra of 10BO–, we observe transitions to the 2 sigma + ground state and the 2 pi excited state of 10BO at an excitation energy of 2.96 eV. The electron affinity of 10BO is measured to be 2.510 plus/minus 0.015 eV. The vibrational frequencies of the ground states of 10BO– and 10BO, and the 2 pi excited state aremore » measured to be 1,725 plus/minus 40, 1,935 30, and 1,320 plus/minus 40 cm-1, respectively. For 10BO2–, we observe transitions to the 2 pi g ground state and two excited states of 10BO2, 2 pi u and 2 signa u+, at excitation energies of 2.26 and 3.04 eV, respectively. The electron affinity of 10BO2 is measured to be 4.46 plus/minus 0.03 eV and the symmetrical stretching vibrational frequency of the 2 pi u excited state of 10BO2 is measured to be 980 plus/minus 30 cm-1. Both density functional and ab initio calculations are performed to elucidate the electronic structure and chemical bonding of the two boron oxide molecules. Comparisons with the isoelectronic AlO– and AlO2– species and the closely related molecules CO, N2, CN–, and CO2 are also discussed.« less