skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe

Abstract

This study investigates the North Atlantic atmospheric rivers (ARs) making landfall over western Europe in the present and future climate from the multi-model ensemble of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Overall, CMIP5 captures the seasonal and spatial variations of historical landfalling AR days, with the large inter-model variability strongly correlated with the inter-model spread of historical jet position. Under RCP 8.5, AR frequency is projected to increase a few times by the end of this century. While thermodynamics plays a dominate role in the future increase of ARs, wind changes associated with the midlatitude jet shifts also significantly contribute to AR changes, resulting in dipole change patterns in all seasons. In the North Atlantic, the model projected jet shifts are strongly correlated with the simulated historical jet position. As models exhibit predominantly equatorward biases in the historical jet position, the large poleward jet shifts reduce AR days south of the historical mean jet position through the dynamical connections between the jet positions and AR days. Using the observed historical jet position as an emergent constraint, dynamical effects further increase AR days in the future above the large increases due to thermodynamical effects. In the future, both totalmore » and extreme precipitation induced by AR contribute more to the seasonal mean and extreme precipitation compared to present primarily because of the increase in AR frequency. While AR precipitation intensity generally increases more relative to the increase in integrated vapor transport, AR extreme precipitation intensity increases much less.« less

Authors:
; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1340786
Report Number(s):
PNNL-SA-115660
Journal ID: ISSN 0894-8755; KP1703010
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Climate; Journal Volume: 29; Journal Issue: 18
Country of Publication:
United States
Language:
English
Subject:
atmospheric rivers; CMIP5; jet position; RCP 8.5; extreme precipitation

Citation Formats

Gao, Yang, Lu, Jian, and Leung, L. Ruby. Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe. United States: N. p., 2016. Web. doi:10.1175/JCLI-D-16-0088.1.
Gao, Yang, Lu, Jian, & Leung, L. Ruby. Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe. United States. doi:10.1175/JCLI-D-16-0088.1.
Gao, Yang, Lu, Jian, and Leung, L. Ruby. 2016. "Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe". United States. doi:10.1175/JCLI-D-16-0088.1.
@article{osti_1340786,
title = {Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe},
author = {Gao, Yang and Lu, Jian and Leung, L. Ruby},
abstractNote = {This study investigates the North Atlantic atmospheric rivers (ARs) making landfall over western Europe in the present and future climate from the multi-model ensemble of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Overall, CMIP5 captures the seasonal and spatial variations of historical landfalling AR days, with the large inter-model variability strongly correlated with the inter-model spread of historical jet position. Under RCP 8.5, AR frequency is projected to increase a few times by the end of this century. While thermodynamics plays a dominate role in the future increase of ARs, wind changes associated with the midlatitude jet shifts also significantly contribute to AR changes, resulting in dipole change patterns in all seasons. In the North Atlantic, the model projected jet shifts are strongly correlated with the simulated historical jet position. As models exhibit predominantly equatorward biases in the historical jet position, the large poleward jet shifts reduce AR days south of the historical mean jet position through the dynamical connections between the jet positions and AR days. Using the observed historical jet position as an emergent constraint, dynamical effects further increase AR days in the future above the large increases due to thermodynamical effects. In the future, both total and extreme precipitation induced by AR contribute more to the seasonal mean and extreme precipitation compared to present primarily because of the increase in AR frequency. While AR precipitation intensity generally increases more relative to the increase in integrated vapor transport, AR extreme precipitation intensity increases much less.},
doi = {10.1175/JCLI-D-16-0088.1},
journal = {Journal of Climate},
number = 18,
volume = 29,
place = {United States},
year = 2016,
month = 9
}
  • This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture inmore » the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.« less
  • Twenty years of regional climate simulated by the Weather Research and Forecasting model for North America has been analyzed to study the influence of the atmospheric rivers and the role of the land surface on heavy precipitation and flooding in the western U.S. Compared to observations, the simulation realistically captured the 95th percentile extreme precipitation, mean precipitation intensity, as well as the mean precipitation and temperature anomalies of all the atmospheric river events between 1980-1999. Contrasting the 1986 President Day and 1997 New Year Day atmospheric river events, differences in atmospheric stability are found to have an influence on themore » spatial distribution of precipitation in the Coastal Range of northern California. Although both cases yield similar amounts of heavy precipitation, the 1997 case was found to produce more runoff compared to the 1986 case. Antecedent soil moisture, the ratio of snowfall to total precipitation (which depends on temperature), and existing snowpack all seem to play a role, leading to a higher runoff to precipitation ratio simulated for the 1997 case. This study underscores the importance of characterizing or simulating atmospheric rivers and the land surface conditions for predicting floods, and for assessing the potential impacts of climate change on heavy precipitation and flooding in the western U.S.« less
  • Simulations from the Community Earth System Model Large Ensemble project are analyzed to investigate the impact of global warming on atmospheric rivers (ARs). The model has notable biases in simulating the subtropical jet position and the relationship between extreme precipitation and moisture transport. After accounting for these biases, the model projects an ensemble mean increase of 35% in the number of landfalling AR days between the last twenty years of the 20th and 21st centuries. However, the number of AR associated extreme precipitation days increases only by 28% because the moisture transport required to produce extreme precipitation also increases withmore » warming. Internal variability introduces an uncertainty of ±8% and ±7% in the projected changes in AR days and associated extreme precipitation days. In contrast, accountings for model biases only change the projected changes by about 1%. The significantly larger mean changes compared to internal variability and to the effects of model biases highlight the robustness of AR responses to global warming.« less