skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

Abstract

The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3%more » with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1340679
Report Number(s):
FERMILAB-PUB-15-311-A; arXiv:1507.05353
Journal ID: ISSN 2470-0010; PRVDAQ; 1383839
Grant/Contract Number:
AC02-07CH11359; FG02-95ER40896; AC02-76SF00515; AST-1138766; NSF PHY-1125897; AYA2012-39559; ESP2013-48274; FPA2013-47986; FP7/2007-2013; 240672; 291329; 306478; SEV-2012-0234
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 94; Journal Issue: 6; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Park, Y., Krause, E., Dodelson, S., Jain, B., Amara, A., Becker, M. R., Bridle, S. L., Clampitt, J., Crocce, M., Fosalba, P., Gaztanaga, E., Honscheid, K., Rozo, E., Sobreira, F., Sánchez, C., Wechsler, R. H., Abbott, T., Abdalla, F. B., Allam, S., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., da Costa, L. N., DePoy, D. L., Desai, S., Dietrich, J. P., Doel, P., Eifler, T. F., Fausti Neto, A., Fernandez, E., Finley, D. A., Flaugher, B., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Miller, C. J., Miquel, R., Nichol, R. C., Ogando, R., Plazas, A. A., Roe, N., Romer, A. K., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Vikram, V., Walker, A. R., Weller, J., and Zuntz, J. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey. United States: N. p., 2016. Web. doi:10.1103/PhysRevD.94.063533.
Park, Y., Krause, E., Dodelson, S., Jain, B., Amara, A., Becker, M. R., Bridle, S. L., Clampitt, J., Crocce, M., Fosalba, P., Gaztanaga, E., Honscheid, K., Rozo, E., Sobreira, F., Sánchez, C., Wechsler, R. H., Abbott, T., Abdalla, F. B., Allam, S., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., da Costa, L. N., DePoy, D. L., Desai, S., Dietrich, J. P., Doel, P., Eifler, T. F., Fausti Neto, A., Fernandez, E., Finley, D. A., Flaugher, B., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Miller, C. J., Miquel, R., Nichol, R. C., Ogando, R., Plazas, A. A., Roe, N., Romer, A. K., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Vikram, V., Walker, A. R., Weller, J., & Zuntz, J. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey. United States. doi:10.1103/PhysRevD.94.063533.
Park, Y., Krause, E., Dodelson, S., Jain, B., Amara, A., Becker, M. R., Bridle, S. L., Clampitt, J., Crocce, M., Fosalba, P., Gaztanaga, E., Honscheid, K., Rozo, E., Sobreira, F., Sánchez, C., Wechsler, R. H., Abbott, T., Abdalla, F. B., Allam, S., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., da Costa, L. N., DePoy, D. L., Desai, S., Dietrich, J. P., Doel, P., Eifler, T. F., Fausti Neto, A., Fernandez, E., Finley, D. A., Flaugher, B., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Miller, C. J., Miquel, R., Nichol, R. C., Ogando, R., Plazas, A. A., Roe, N., Romer, A. K., Rykoff, E. S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Vikram, V., Walker, A. R., Weller, J., and Zuntz, J. 2016. "Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey". United States. doi:10.1103/PhysRevD.94.063533. https://www.osti.gov/servlets/purl/1340679.
@article{osti_1340679,
title = {Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey},
author = {Park, Y. and Krause, E. and Dodelson, S. and Jain, B. and Amara, A. and Becker, M. R. and Bridle, S. L. and Clampitt, J. and Crocce, M. and Fosalba, P. and Gaztanaga, E. and Honscheid, K. and Rozo, E. and Sobreira, F. and Sánchez, C. and Wechsler, R. H. and Abbott, T. and Abdalla, F. B. and Allam, S. and Benoit-Lévy, A. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and da Costa, L. N. and DePoy, D. L. and Desai, S. and Dietrich, J. P. and Doel, P. and Eifler, T. F. and Fausti Neto, A. and Fernandez, E. and Finley, D. A. and Flaugher, B. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gutierrez, G. and James, D. J. and Kent, S. and Kuehn, K. and Kuropatkin, N. and Lima, M. and Maia, M. A. G. and Marshall, J. L. and Melchior, P. and Miller, C. J. and Miquel, R. and Nichol, R. C. and Ogando, R. and Plazas, A. A. and Roe, N. and Romer, A. K. and Rykoff, E. S. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Soares-Santos, M. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thaler, J. and Vikram, V. and Walker, A. R. and Weller, J. and Zuntz, J.},
abstractNote = {The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.},
doi = {10.1103/PhysRevD.94.063533},
journal = {Physical Review D},
number = 6,
volume = 94,
place = {United States},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we studymore » how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.« less
  • Cited by 2
  • We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe asmore » $$\Omega_m = 0.31 \pm 0.09$$ and the clustering amplitude of the matter power spectrum as $$\sigma_8 = 0.74 +\pm 0.13$$ after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into $$S_8$$ = $$\sigma_8(\Omega_m/0.3)^{0.16} = 0.74 \pm 0.12$$ for our fiducial lens redshift bin at 0.35 < z < 0.5, while $$S_8 = 0.78 \pm 0.09$$ using two bins over the range 0.2 < z < 0.5. We study the robustness of the results under changes in the data vectors, modelling and systematics treatment, including photometric redshift and shear calibration uncertainties, and find consistency in the derived cosmological parameters. We show that our results are consistent with previous cosmological analyses from DES and other data sets and conclude with a joint analysis of DES angular clustering and galaxy-galaxy lensing with Planck CMB data, Baryon Accoustic Oscillations and Supernova type Ia measurements.« less
  • Here, we present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe as Ω m = 0.31 ± 0.09 and the clustering amplitude of the matter power spectrum as σ 8 = 0.74 ± 0.13 after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into Smore » 8 Ξ σ 8m/0.3) 0.16 = 0.74 ± 0.12 for our fiducial lens redshift bin at 0.35 < z < 0.5, while S 8 = 0.78 ± 0.09 using two bins over the range 0.2 < z < 0.5. We study the robustness of the results under changes in the data vectors, modelling and systematics treatment, including photometric redshift and shear calibration uncertainties, and find consistency in the derived cosmological parameters. We show that our results are consistent with previous cosmological analyses from DES and other data sets and conclude with a joint analysis of DES angular clustering and galaxy-galaxy lensing with Planck CMB data, Baryon Accoustic Oscillations and Supernova type Ia measurements.« less
  • We present cosmological constraints from the Dark Energy Survey (DES) using a combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. We use a 139 square degree contiguous patch of DES data from the Science Verification (SV) period of observations. Using large scale measurements, we constrain the matter density of the Universe asmore » $$\Omega_m = 0.31 \pm 0.09$$ and the clustering amplitude of the matter power spectrum as $$\sigma_8 = 0.74 +\pm 0.13$$ after marginalizing over seven nuisance parameters and three additional cosmological parameters. This translates into $$S_8$$ = $$\sigma_8(\Omega_m/0.3)^{0.16} = 0.74 \pm 0.12$$ for our fiducial lens redshift bin at 0.35 < z < 0.5, while $$S_8 = 0.78 \pm 0.09$$ using two bins over the range 0.2 < z < 0.5. We study the robustness of the results under changes in the data vectors, modelling and systematics treatment, including photometric redshift and shear calibration uncertainties, and find consistency in the derived cosmological parameters. We show that our results are consistent with previous cosmological analyses from DES and other data sets and conclude with a joint analysis of DES angular clustering and galaxy-galaxy lensing with Planck CMB data, Baryon Accoustic Oscillations and Supernova type Ia measurements.« less