skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis Results for Sub-Samples of SRS Tanks 30, 32, and 39 to Support Evaluations of the I-129 Inventory

Abstract

In order to appropriately model and predict the chemical integrity and performance of cementitious materials used for waste immobilization at the Savannah River Site (SRS), it is critical to understand the I-129 solubility and distribution within the tank farm. Iodine in radioactive waste and in environmental media is typically highly mobile and long lived. Iodine is ubiquitous in SRS tank waste and waste forms. The iodine is assumed to be soluble and present at low levels in Performance Assessments (PAs) for SRS Tank Farms, and is one of the dose drivers in the PAs for both the SRS Salt Disposal Facility (SDF) and the H-Area Tank Farm (HTF). Analysis of tank waste samples is critical to understanding the Tank Farm iodine inventory and reducing disposal uncertainty. Higher than expected iodine levels have recently been observed in residual solids isolated from some SRS tanks prior to closure, indicating uncertainty regarding the chemical species involved. If the iodine inventory uncertainty is larger than anticipated, future work may be necessary to reduce the uncertainty. This memorandum satisfies a portion of the work scope identified in Task Plan SRNL-RP-2016-00651. A separate memorandum issued previously, reported historical unpublished I-129 data, a significant portion of whichmore » was below detectable analytical limits. This memorandum includes iodine and general chemical analysis results for six archived SRNL samples which were previously reported to have I-129 concentrations below detectable limits. Lower sample dilution factors were used for the current analyses in order to obtain concentrations above detection. The samples analyzed included surface and depth samples from SRS tanks 30, 32, and 39.« less

Authors:
 [1]
  1. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Sponsoring Org.:
USDOE Office of Environmental Management (EM)
OSTI Identifier:
1340196
Report Number(s):
SRNL-L3100-2017-00007
TRN: US1701500
DOE Contract Number:
AC09-08SR22470
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; RADIOACTIVE WASTES; IODINE 129; TANKS; CONCENTRATION RATIO; STORAGE FACILITIES; INVENTORIES; SAVANNAH RIVER PLANT; IODINE; ABUNDANCE; SAMPLING; CHEMICAL ANALYSIS; DISTRIBUTION; SOLIDS; SOLUBILITY

Citation Formats

King, W. D. Analysis Results for Sub-Samples of SRS Tanks 30, 32, and 39 to Support Evaluations of the I-129 Inventory. United States: N. p., 2017. Web. doi:10.2172/1340196.
King, W. D. Analysis Results for Sub-Samples of SRS Tanks 30, 32, and 39 to Support Evaluations of the I-129 Inventory. United States. doi:10.2172/1340196.
King, W. D. Wed . "Analysis Results for Sub-Samples of SRS Tanks 30, 32, and 39 to Support Evaluations of the I-129 Inventory". United States. doi:10.2172/1340196. https://www.osti.gov/servlets/purl/1340196.
@article{osti_1340196,
title = {Analysis Results for Sub-Samples of SRS Tanks 30, 32, and 39 to Support Evaluations of the I-129 Inventory},
author = {King, W. D.},
abstractNote = {In order to appropriately model and predict the chemical integrity and performance of cementitious materials used for waste immobilization at the Savannah River Site (SRS), it is critical to understand the I-129 solubility and distribution within the tank farm. Iodine in radioactive waste and in environmental media is typically highly mobile and long lived. Iodine is ubiquitous in SRS tank waste and waste forms. The iodine is assumed to be soluble and present at low levels in Performance Assessments (PAs) for SRS Tank Farms, and is one of the dose drivers in the PAs for both the SRS Salt Disposal Facility (SDF) and the H-Area Tank Farm (HTF). Analysis of tank waste samples is critical to understanding the Tank Farm iodine inventory and reducing disposal uncertainty. Higher than expected iodine levels have recently been observed in residual solids isolated from some SRS tanks prior to closure, indicating uncertainty regarding the chemical species involved. If the iodine inventory uncertainty is larger than anticipated, future work may be necessary to reduce the uncertainty. This memorandum satisfies a portion of the work scope identified in Task Plan SRNL-RP-2016-00651. A separate memorandum issued previously, reported historical unpublished I-129 data, a significant portion of which was below detectable analytical limits. This memorandum includes iodine and general chemical analysis results for six archived SRNL samples which were previously reported to have I-129 concentrations below detectable limits. Lower sample dilution factors were used for the current analyses in order to obtain concentrations above detection. The samples analyzed included surface and depth samples from SRS tanks 30, 32, and 39.},
doi = {10.2172/1340196},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jan 11 00:00:00 EST 2017},
month = {Wed Jan 11 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.
  • The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mLmore » stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H 2O. A 30 mL Teflon® bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 °C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.« less
  • This report provides the results of analyses on Tanks 39H surface and subsurface supernatant liquid samples in support of the Corrosion Control Program. Analyses included warm acid strike preparation followed by analysis for silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. Other reported analytical results include analyses results for uranium, Pu-241 and Pu-239.
  • This report provides the results of analyses on Tanks 39H surface and subsurface supernatant liquid samples in support of the Corrosion Control Program. Analyses included warm acid strike preparation followed by analysis for silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. Other reported analytical results include analyses results for uranium, Pu-241 and Pu-239. The measured sodium concentration averaged, respectively, 4.28E+00 ± 9.30E-02 M and 4.32E+00 ± 1.076E-01 M in the Tank 39H surface sample and Tank 39H subsurface sample. In general, the nitrate, nitrite, free-OH and specific gravity of the Tank 39H surface and subsurfacemore » samples were all about the same in magnitude, respectively, averaging 1.98 M, 0.314 M, 1.26 M and 1.24. The measured silicon concentration for the Tank 39H surface and subsurface samples were, respectively, 3.84E+01± 5.51E+00 and 4.14E+01± 1.17E+ 00 mg/L. Based on the uranium, Pu-241 and Pu-239 concentrations, the calculated U-235 equivalent is 21.41 wt% for the surface sample and 21.32 wt% for the subsurface sample.« less
  • This is an analytical data report for samples received from the central plateau contractor. The samples were analyzed for iodine-129.