skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: iGeoT v1.0: Automatic Parameter Estimation for Multicomponent Geothermometry, User's Guide

Abstract

GeoT implements the multicomponent geothermometry method developed by Reed and Spycher [1984] into a stand-alone computer program to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization. This integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. This manual contains installation instructions for iGeoT, and briefly describes the input formats needed to run iGeoT in Automatic or Expert Mode. An example is also provided to demonstrate the use of iGeoT.

Authors:
 [1];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Geosciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (EE-4G)
OSTI Identifier:
1339970
Report Number(s):
LBNL-1005841
ir:1005842
DOE Contract Number:
AC02-05CH11231
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 97 MATHEMATICS AND COMPUTING

Citation Formats

Spycher, Nicolas, and Finsterle, Stefan. iGeoT v1.0: Automatic Parameter Estimation for Multicomponent Geothermometry, User's Guide. United States: N. p., 2016. Web. doi:10.2172/1339970.
Spycher, Nicolas, & Finsterle, Stefan. iGeoT v1.0: Automatic Parameter Estimation for Multicomponent Geothermometry, User's Guide. United States. doi:10.2172/1339970.
Spycher, Nicolas, and Finsterle, Stefan. 2016. "iGeoT v1.0: Automatic Parameter Estimation for Multicomponent Geothermometry, User's Guide". United States. doi:10.2172/1339970. https://www.osti.gov/servlets/purl/1339970.
@article{osti_1339970,
title = {iGeoT v1.0: Automatic Parameter Estimation for Multicomponent Geothermometry, User's Guide},
author = {Spycher, Nicolas and Finsterle, Stefan},
abstractNote = {GeoT implements the multicomponent geothermometry method developed by Reed and Spycher [1984] into a stand-alone computer program to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization. This integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss. This manual contains installation instructions for iGeoT, and briefly describes the input formats needed to run iGeoT in Automatic or Expert Mode. An example is also provided to demonstrate the use of iGeoT.},
doi = {10.2172/1339970},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Technical Report:

Save / Share:
  • GeoT (Spycher et al., 2011) was developed by automating the multicomponent chemical geothermometry method of Reed and Spycher (1984). As needed, this program can be integrated with parameter estimation software. Without optimization, GeoT is useful for fast geothermometry computations with fluid compositions from single locations, and for independently processing fluids from multiple locations in one single program run.
  • GeoT implements the multicomponent geothermometry method developed by Reed and Spycher (1984, Geochim. Cosmichim. Acta 46 513–528) into a stand-alone computer program, to ease the application of this method and to improve the prediction of geothermal reservoir temperatures using full and integrated chemical analyses of geothermal fluids. Reservoir temperatures are estimated from statistical analyses of mineral saturation indices computed as a function of temperature. The reconstruction of the deep geothermal fluid compositions, and geothermometry computations, are all implemented into the same computer program, allowing unknown or poorly constrained input parameters to be estimated by numerical optimization using existing parameter estimationmore » software, such as iTOUGH2, PEST, or UCODE. This integrated geothermometry approach presents advantages over classical geothermometers for fluids that have not fully equilibrated with reservoir minerals and/or that have been subject to processes such as dilution and gas loss.« less
  • Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the high energy physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. The Beam Tools are a set of C++ classes designed to facilitate the simulation of accelerator elements: r.f. cavities, magnets, absorbers, etc. These elements are constructed from Geant4 solid volumes like boxes, tubes, trapezoids, or spheers. There are many computer programs for beam physics simulations, but Geant4 is ideal to model a beammore » through a material or to integrate a beam line with a complex detector. There are many such examples in the current international High Energy Physics programs. For instance, an essential part of the R&D associated with the Neutrino Source/Muon Collider accelerator is the ionization cooling channel, which is a section of the system aimed to reduce the size of the muon beam in phase space. The ionization cooling technique uses a combination of linacs and light absorbers to reduce the transverse momentum and size of the beam, while keeping the longitudinal momentum constant. The MuCool/MICE (muon cooling) experiments need accurate simulations of the beam transport through the cooling channel in addition to a detailed simulation of the detectors designed to measure the size of the beam. The accuracy of the models for physics processes associated with muon ionization and multiple scattering is critical in this type of applications. Another example is the simulation of the interaction region in future accelerators. The high luminosity and background environments expected in the Next Linear Collider (NLC) and the Very Large Hadron Collider (VLHC) pose great demand on the detectors, which may be optimized by means of a simulation of the detector-accelerator interface.« less
  • The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL,more » gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.« less