skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves

Abstract

Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing of these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form amore » molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded microstructure. However, annealing the samples led to quick recovery in hardness as evidenced by a drop in Vickers hardness of 20%. Hot rolling was performed at 650 and 800°C. The hot-rolling mill loads (load separation force) were approximately 40 to 50% less than the cold-rolling for the same reduction and thickness. It was observed that hot rolling the samples with 50% or more reduction in thickness were responsible for dynamic recrystallization in the hot-rolled samples and led to grain refinement. Unlike the cold-rolled samples, the hot-rolled samples did not fracture the carbides and appeared to heal the casting defects. The recovery phenomenon was similar to the cold-rolled samples above the eutectoid temperatures, but owing to the refined grain size, the precipitation of the lamellar phase was far more rapid in these samples and the hardness increased more rapidly than in the cold rolled sample when heated below the eutectoid temperature. The data generated from these rolling efforts has been used to make the process modeling efforts more robust and applicable to all USHPRR partner rolling mills. The flow stress for cold rolling the samples was determined to be between 170-190 ksi, with frictional forces between 0.2 and 0.4 for the PNNL mill. The measured roll separation forces and those simulated using finite element methods for hot and cold rolling for the PNNL rolling mill were in good agreement.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1339909
Report Number(s):
PNNL-25781
DN3001010
DOE Contract Number:
AC05-76RL01830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS

Citation Formats

Joshi, Vineet V., Paxton, Dean M., Lavender, Curt A., and Burkes, Douglas. The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves. United States: N. p., 2016. Web. doi:10.2172/1339909.
Joshi, Vineet V., Paxton, Dean M., Lavender, Curt A., & Burkes, Douglas. The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves. United States. doi:10.2172/1339909.
Joshi, Vineet V., Paxton, Dean M., Lavender, Curt A., and Burkes, Douglas. Sat . "The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves". United States. doi:10.2172/1339909. https://www.osti.gov/servlets/purl/1339909.
@article{osti_1339909,
title = {The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves},
author = {Joshi, Vineet V. and Paxton, Dean M. and Lavender, Curt A. and Burkes, Douglas},
abstractNote = {Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing of these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form a molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded microstructure. However, annealing the samples led to quick recovery in hardness as evidenced by a drop in Vickers hardness of 20%. Hot rolling was performed at 650 and 800°C. The hot-rolling mill loads (load separation force) were approximately 40 to 50% less than the cold-rolling for the same reduction and thickness. It was observed that hot rolling the samples with 50% or more reduction in thickness were responsible for dynamic recrystallization in the hot-rolled samples and led to grain refinement. Unlike the cold-rolled samples, the hot-rolled samples did not fracture the carbides and appeared to heal the casting defects. The recovery phenomenon was similar to the cold-rolled samples above the eutectoid temperatures, but owing to the refined grain size, the precipitation of the lamellar phase was far more rapid in these samples and the hardness increased more rapidly than in the cold rolled sample when heated below the eutectoid temperature. The data generated from these rolling efforts has been used to make the process modeling efforts more robust and applicable to all USHPRR partner rolling mills. The flow stress for cold rolling the samples was determined to be between 170-190 ksi, with frictional forces between 0.2 and 0.4 for the PNNL mill. The measured roll separation forces and those simulated using finite element methods for hot and cold rolling for the PNNL rolling mill were in good agreement.},
doi = {10.2172/1339909},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Jul 30 00:00:00 EDT 2016},
month = {Sat Jul 30 00:00:00 EDT 2016}
}

Technical Report:

Save / Share:
  • Sections of eight plate castings of uranium alloyed with 10 wt% molybdenum (U-10Mo) were sent from Y-12 to the Pacific Northwest National Laboratory (PNNL) for microstructural characterization. This report summarizes the results from this study.
  • This report covers the examination of 13 samples of rolled plates from three separate castings of uranium, alloyed with 10 wt% molybdenum (U-10Mo) which were sent from the Y-12 National Security Complex (Y12) to the Pacific Northwest National Laboratory (PNNL).
  • The U-10Mo in low enrichments (LEU) has been identified as the most promising alternative to the current highly enriched uranium (HEU) used in the United States’ fleet of high performance research reactors (USHPRRs). The nominal configuration of the new LEU U-10Mo plate fuel comprises a U-10Mo fuel foil enriched to slightly less than 20% U-235 (0.08” to 0.02” thick), a thin Zr interlayer/diffusion barrier (25 m thick) and a relatively thick outer can of 6061 aluminum. Currently, the Zr interlayer is clad by hot roll bonding. Previous studies and observations revealed a thinning of the zirconium (Zr) layer during thismore » fuel fabrication process, which is not desirable from the fuel performance perspective. Coarse UMo grains, dendritic structures, Mo concentration segregation, carbides, and porosity are present in the as-cast material and can lead to a nonuniform UMo/Zr interface. The purpose of the current work is to investigate the effects of these microstructural parameters on the Zr coating variation. A microstructure-based finite-element method model was used in this work, and a study on the effect of homogenization on the interface between U-10Mo and Zr was conducted. The model uses actual backscattered electron–scanning electron microscopy microstructures, Mo concentrations, and mechanical properties to predict the behavior of a representative volume element under compressive loading during the rolling process. The model successfully predicted the experimentally observed thinning of the Zr layer in the as-cast material. The model also uses results from a homogenization model as an input, and a study on the effect of different levels of homogenization on the interface indicated that homogenization helps decrease this thinning. This model can be considered a predictive tool representing a first step for model integration and an input into a larger fuel fabrication performance model.« less
  • In Phase 1 of this study, the mechanical properties of as-cast, depleted uranium alloyed with 10 weight percent molybdenum alloy (U-10Mo) samples were evaluated by high-temperature compression testing. Compression testing was conducted at three strain rates over a temperature range of 400 to 800°C. The results indicated that with increasing test temperature, the material flow stress decreases and the material becomes more sensitive to strain rate. In addition, above the eutectoid transformation temperature (~ 550°C), the drop in material flow stress is prominent and shows a strain-softening behavior, especially at lower strain rates. In the second part of this research,more » we studied the effect that homogenization heat treatment had on the high temperature mechanical properties and microstructure of the cast U-10Mo alloy. Various homogenization times and temperatures were studied ranging between 800 and 1000°C for 4 to 48 hours. Based on the microstructural response in this homogenization study, a heat treatment cycle of 800°C for 24 hours and another at 1000°C for 16 hours were selected as the times at temperature to achieve a fully homogenized sample. Samples from these conditions were then compression tested at a variety of temperatures ranging from 500 to 800°C. The microstructure of these samples were compared to the as-cast samples and to a baseline sample homogenized at 1000°C for 16 hours. The results indicate that below the eutectoid temperature (~ 550°C) all three samples showed strain hardening and followed similar trends. Above the eutectoid temperature, the yield strength of the material decreased linearly. For the as-cast sample and the sample homogenized at 800°C for 24 hours, the n-values were negative, whereas for the samples homogenized at 1000°C for 16 hours the material exhibited a perfectly plastic behavior. The as-cast sample, heat treated at 800°C for 24 hours, showed significant lamellar structure transformation that seems to have precipitated along the grain boundaries in the molybdenum-lean regions. In similar samples, homogenized at 800°C for 24 hours and tested at 650°C, the backscattered-electron scanning electron microscopy images revealed a composite structure of lamellar phase and nano-scale molybdenum-rich and -lean phases along the grain boundaries. These phases may have been responsible for the lowering of the flow stress in the material observed in the Phase 1 work. For comparison, the samples homogenized at 1000°C for 16 hours showed no such transformations.« less
  • Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on various microstructure idealizations to achieve a large range of volume fractions with high mesh quality. This study investigates how different microstructure idealizations and constraints affect the apparent homogenized elastic constants in the virgin state of the material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the fully damaged state of the material in which all GMBs are destroyed. In the latter state, the material behaves as an elastomeric foam. Four microstructure idealizations are considered relating to how GMBs are packedmore » into a representative volume element (RVE): (1) no boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary penetration, and (4) boundary penetration and GMB-GMB overlap. First order computational homogenization with kinematically uniform displacement boundary conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear moduli for the four microstructure idealizations in the intact and fully broken GMB material states. It was found that boundary penetration has a significant effect on the shear modulus for microstructures with intact GMBs, but that neither boundary penetration nor GMB overlap have a significant effect on homogenized properties for microstructures with fully broken GMBs. The primary conclusion of the study is that future investigations into Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.« less