skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

Abstract

A necessary prerequisite of cloud formation, aerosol particles represent one of the largest uncertainties in computer simulations of climate change1,2, in part because of a poor understanding of processes under natural conditions3,4. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions5-7. Cloud condensation nuclei (CCN) in clean Amazonia are mostly produced by the growth of smaller particles in the boundary layer8-10, whereas these smaller particles themselves 31 appear to be produced elsewhere5,11. Key questions are in what part of the atmosphere they might 32 be produced and what could be the transport processes that deliver them to the boundary layer, where they grow into CCN. Here, using recent aircraft measurements above central Amazonia, we show high concentrations of small particles in the lower free troposphere. The particle size spectrum shifts towards larger sizes with decreasing altitude, implying particle growth as air descends from the free troposphere towards Earth's surface. Complementary measurements at ground sites show that free tropospheric air having high concentrations of small particles (diameters of less than 50 nm) is transported into the boundary layer during precipitation events, both by strong convective downdrafts and bymore » weaker downward motions in the trailing stratiform region. This vertical transport helps maintain the population of small particles and ultimately CCN in the boundary layer, thereby playing an important role in controlling the climate state under natural conditions. In contrast, this mechanism becomes masked under polluted conditions, which sometimes prevail at times in Amazonia as well as over other tropical continental regions5,12.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1339873
Report Number(s):
PNNL-SA-117828
Journal ID: ISSN 0028-0836; KP1704010
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Nature (London)
Additional Journal Information:
Journal Volume: 539; Journal Issue: 7629; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Wang, Jian, Krejci, Radovan, Giangrande, Scott, Kuang, Chongai, Barbosa, Henrique M. J., Brito, Joel, Carbone, Samara, Chi, Xuguang, Comstock, Jennifer, Ditas, Florian, Lavric, Jost, Manninen, Hanna E., Mei, Fan, Moran-Zuloaga, Daniel, Pöhlker, Christopher, Pöhlker, Mira L., Saturno, Jorge, Schmid, Beat, Souza, Rodrigo A. F., Springston, Stephen R., Tomlinson, Jason M., Toto, Tami, Walter, David, Wimmer, Daniela, Smith, James N., Kulmala, Markku, Machado, Luiz A. T., Artaxo, Paulo, Andreae, Meinrat O., Petäjä, Tuukka, and Martin, Scot T. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. United States: N. p., 2016. Web. doi:10.1038/nature19819.
Wang, Jian, Krejci, Radovan, Giangrande, Scott, Kuang, Chongai, Barbosa, Henrique M. J., Brito, Joel, Carbone, Samara, Chi, Xuguang, Comstock, Jennifer, Ditas, Florian, Lavric, Jost, Manninen, Hanna E., Mei, Fan, Moran-Zuloaga, Daniel, Pöhlker, Christopher, Pöhlker, Mira L., Saturno, Jorge, Schmid, Beat, Souza, Rodrigo A. F., Springston, Stephen R., Tomlinson, Jason M., Toto, Tami, Walter, David, Wimmer, Daniela, Smith, James N., Kulmala, Markku, Machado, Luiz A. T., Artaxo, Paulo, Andreae, Meinrat O., Petäjä, Tuukka, & Martin, Scot T. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. United States. doi:10.1038/nature19819.
Wang, Jian, Krejci, Radovan, Giangrande, Scott, Kuang, Chongai, Barbosa, Henrique M. J., Brito, Joel, Carbone, Samara, Chi, Xuguang, Comstock, Jennifer, Ditas, Florian, Lavric, Jost, Manninen, Hanna E., Mei, Fan, Moran-Zuloaga, Daniel, Pöhlker, Christopher, Pöhlker, Mira L., Saturno, Jorge, Schmid, Beat, Souza, Rodrigo A. F., Springston, Stephen R., Tomlinson, Jason M., Toto, Tami, Walter, David, Wimmer, Daniela, Smith, James N., Kulmala, Markku, Machado, Luiz A. T., Artaxo, Paulo, Andreae, Meinrat O., Petäjä, Tuukka, and Martin, Scot T. Mon . "Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall". United States. doi:10.1038/nature19819.
@article{osti_1339873,
title = {Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall},
author = {Wang, Jian and Krejci, Radovan and Giangrande, Scott and Kuang, Chongai and Barbosa, Henrique M. J. and Brito, Joel and Carbone, Samara and Chi, Xuguang and Comstock, Jennifer and Ditas, Florian and Lavric, Jost and Manninen, Hanna E. and Mei, Fan and Moran-Zuloaga, Daniel and Pöhlker, Christopher and Pöhlker, Mira L. and Saturno, Jorge and Schmid, Beat and Souza, Rodrigo A. F. and Springston, Stephen R. and Tomlinson, Jason M. and Toto, Tami and Walter, David and Wimmer, Daniela and Smith, James N. and Kulmala, Markku and Machado, Luiz A. T. and Artaxo, Paulo and Andreae, Meinrat O. and Petäjä, Tuukka and Martin, Scot T.},
abstractNote = {A necessary prerequisite of cloud formation, aerosol particles represent one of the largest uncertainties in computer simulations of climate change1,2, in part because of a poor understanding of processes under natural conditions3,4. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions5-7. Cloud condensation nuclei (CCN) in clean Amazonia are mostly produced by the growth of smaller particles in the boundary layer8-10, whereas these smaller particles themselves 31 appear to be produced elsewhere5,11. Key questions are in what part of the atmosphere they might 32 be produced and what could be the transport processes that deliver them to the boundary layer, where they grow into CCN. Here, using recent aircraft measurements above central Amazonia, we show high concentrations of small particles in the lower free troposphere. The particle size spectrum shifts towards larger sizes with decreasing altitude, implying particle growth as air descends from the free troposphere towards Earth's surface. Complementary measurements at ground sites show that free tropospheric air having high concentrations of small particles (diameters of less than 50 nm) is transported into the boundary layer during precipitation events, both by strong convective downdrafts and by weaker downward motions in the trailing stratiform region. This vertical transport helps maintain the population of small particles and ultimately CCN in the boundary layer, thereby playing an important role in controlling the climate state under natural conditions. In contrast, this mechanism becomes masked under polluted conditions, which sometimes prevail at times in Amazonia as well as over other tropical continental regions5,12.},
doi = {10.1038/nature19819},
journal = {Nature (London)},
issn = {0028-0836},
number = 7629,
volume = 539,
place = {United States},
year = {2016},
month = {10}
}

Works referenced in this record:

Nucleation in the equatorial free troposphere: Favorable environments during PEM-Tropics
journal, March 1999

  • Clarke, A. D.; Eisele, F.; Kapustin, V. N.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D5
  • DOI: 10.1029/98JD02303

ATMOSPHERE: Aerosols Before Pollution
journal, January 2007


A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma
journal, October 2013

  • Giangrande, Scott E.; Collis, Scott; Straka, Jerry
  • Journal of Applied Meteorology and Climatology, Vol. 52, Issue 10
  • DOI: 10.1175/JAMC-D-12-0185.1

Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest
journal, January 2005

  • Krejci, R.; Ström, J.; de Reus, M.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 6
  • DOI: 10.5194/acp-5-1527-2005

Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent?
journal, July 2001

  • Roberts, Gregory C.; Andreae, Meinrat O.; Zhou, Jingchuan
  • Geophysical Research Letters, Vol. 28, Issue 14
  • DOI: 10.1029/2000GL012585

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
journal, August 2011

  • Kirkby, Jasper; Curtius, Joachim; Almeida, João
  • Nature, Vol. 476, Issue 7361
  • DOI: 10.1038/nature10343

Direct Observations of Atmospheric Aerosol Nucleation
journal, February 2013


Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season
journal, January 2002


Free troposphere as a major source of CCN for the equatorial pacific boundary layer: long-range transport and teleconnections
journal, January 2013

  • Clarke, A. D.; Freitag, S.; Simpson, R. M. C.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 15
  • DOI: 10.5194/acp-13-7511-2013

Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)
journal, January 2016

  • Martin, S. T.; Artaxo, P.; Machado, L. A. T.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 8
  • DOI: 10.5194/acp-16-4785-2016

The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales
journal, January 2006

  • Spracklen, D. V.; Carslaw, K. S.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5631-2006

A Composite Mesoscale Cumulonimbus Budget
journal, May 1973


Measuring aerosol size distributions with the fast integrated mobility spectrometer
journal, November 2008


A comparison of Amazon rainfall characteristics derived from TRMM, CMORPH and the Brazilian national rain gauge network
journal, January 2011

  • Buarque, Diogo Costa; de Paiva, Rodrigo Cauduro Dias; Clarke, Robin T.
  • Journal of Geophysical Research, Vol. 116, Issue D19
  • DOI: 10.1029/2011JD016060

Transport of ozone to the surface by convective downdrafts at night
journal, January 2002


Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions
journal, January 2013

  • Artaxo, Paulo; Rizzo, Luciana V.; Brito, Joel F.
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00052d

Rainfall estimation from TOGA radar observations during LBA field campaign
journal, January 2002

  • Anagnostou, Emmanouil N.
  • Journal of Geophysical Research, Vol. 107, Issue D20
  • DOI: 10.1029/2001JD000377

Sources and properties of Amazonian aerosol particles
journal, January 2010

  • Martin, Scot T.; Andreae, Meinrat O.; Artaxo, Paulo
  • Reviews of Geophysics, Vol. 48, Issue 2
  • DOI: 10.1029/2008RG000280

Deep convective clouds as aerosol production engines: Role of insoluble organics
journal, January 2006

  • Kulmala, Markku; Reissell, Anni; Sipilä, Mikko
  • Journal of Geophysical Research, Vol. 111, Issue D17
  • DOI: 10.1029/2005JD006963

Spurious aerosol measurements when sampling from aircraft in the vicinity of clouds
journal, November 1998

  • Weber, R. J.; Clarke, A. D.; Litchy, M.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D21
  • DOI: 10.1029/98JD02086

The Computation of Equivalent Potential Temperature
journal, July 1980


The temporal distribution of amazonian rainfall and its implications for forest interception
journal, October 1990

  • Lloyd, C. R.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 116, Issue 496
  • DOI: 10.1002/qj.49711649612

Climatic Impacts of “Friagens” in Forested and Deforested Areas of the Amazon Basin
journal, November 1997


Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga
journal, January 2013


Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
journal, September 2010


Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)
journal, January 2015

  • Chen, Q.; Farmer, D. K.; Rizzo, L. V.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 7
  • DOI: 10.5194/acp-15-3687-2015

Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1
journal, July 1998

  • Clarke, A. D.; Varner, J. L.; Eisele, F.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D13
  • DOI: 10.1029/97JD02987

Impact of nucleation on global CCN
journal, January 2009

  • Merikanto, J.; Spracklen, D. V.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 21
  • DOI: 10.5194/acp-9-8601-2009

The DOE ARM Aerial Facility
journal, May 2014

  • Schmid, B.; Tomlinson, J. M.; Hubbe, J. M.
  • Bulletin of the American Meteorological Society, Vol. 95, Issue 5
  • DOI: 10.1175/BAMS-D-13-00040.1

Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin
journal, January 2009

  • Chen, Q.; Farmer, D. K.; Schneider, J.
  • Geophysical Research Letters, Vol. 36, Issue 20
  • DOI: 10.1029/2009GL039880

Do organics contribute to small particle formation in the Amazonian upper troposphere?
journal, January 2008

  • Ekman, Annica M. L.; Krejci, Radovan; Engström, Anders
  • Geophysical Research Letters, Vol. 35, Issue 17
  • DOI: 10.1029/2008GL034970

Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere
journal, September 2003


A Study of Processes that Govern the Maintenance of Aerosols in the Marine Boundary Layer
journal, April 1999


The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols
journal, January 2015

  • Andreae, M. O.; Acevedo, O. C.; Araùjo, A.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 18
  • DOI: 10.5194/acp-15-10723-2015

Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon
journal, August 2012


Contrasting convective regimes over the Amazon: Implications for cloud electrification
journal, January 2002


Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene
journal, February 2004


Diurnal march of the convection observed during TRMM-WETAMC/LBA
journal, January 2002

  • Machado, Luiz A. T.
  • Journal of Geophysical Research, Vol. 107, Issue D20
  • DOI: 10.1029/2001JD000338

The Thermodynamic Transformation of the Tropical Subcloud Layer by Precipitation and Downdrafts
journal, June 1976


An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)
journal, January 2010

  • Martin, S. T.; Andreae, M. O.; Althausen, D.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11415-2010

An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)
journal, January 2010

  • Martin, S. T.; Andreae, M. O.; Althausen, D.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 7
  • DOI: 10.5194/acpd-10-18139-2010

    Works referencing / citing this record:

    Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga
    journal, January 2013


    Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory
    journal, January 2019

    • Pöhlker, Christopher; Walter, David; Paulsen, Hauke
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 13
    • DOI: 10.5194/acp-19-8425-2019

    The temporal distribution of amazonian rainfall and its implications for forest interception
    journal, October 1990

    • Lloyd, C. R.
    • Quarterly Journal of the Royal Meteorological Society, Vol. 116, Issue 496
    • DOI: 10.1002/qj.49711649612

    The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales
    journal, January 2006

    • Spracklen, D. V.; Carslaw, K. S.; Kulmala, M.
    • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
    • DOI: 10.5194/acp-6-5631-2006

    Campaign datasets for Observations and Modeling of the Green Ocean Amazon (GOAMAZON)
    dataset, January 2016

    • Martin, Scot; Mei, Fan; Alexander, Lizabeth
    • ARM, 64 data sets
    • DOI: 10.5439/1346559

    Measuring aerosol size distributions with the fast integrated mobility spectrometer
    journal, November 2008


    Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)
    journal, January 2015

    • Chen, Q.; Farmer, D. K.; Rizzo, L. V.
    • Atmospheric Chemistry and Physics, Vol. 15, Issue 7
    • DOI: 10.5194/acp-15-3687-2015

    Free troposphere as a major source of CCN for the equatorial pacific boundary layer: long-range transport and teleconnections
    journal, January 2013

    • Clarke, A. D.; Freitag, S.; Simpson, R. M. C.
    • Atmospheric Chemistry and Physics, Vol. 13, Issue 15
    • DOI: 10.5194/acp-13-7511-2013

    Large contribution of natural aerosols to uncertainty in indirect forcing
    journal, November 2013

    • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
    • Nature, Vol. 503, Issue 7474
    • DOI: 10.1038/nature12674

    Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere
    journal, September 2003


    An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)
    journal, January 2010

    • Martin, S. T.; Andreae, M. O.; Althausen, D.
    • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
    • DOI: 10.5194/acp-10-11415-2010

    Direct Observations of Atmospheric Aerosol Nucleation
    journal, February 2013


    The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols
    journal, January 2015

    • Andreae, M. O.; Acevedo, O. C.; Araùjo, A.
    • Atmospheric Chemistry and Physics, Vol. 15, Issue 18
    • DOI: 10.5194/acp-15-10723-2015

    Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest
    journal, January 2005

    • Krejci, R.; Ström, J.; de Reus, M.
    • Atmospheric Chemistry and Physics, Vol. 5, Issue 6
    • DOI: 10.5194/acp-5-1527-2005

    Impact of nucleation on global CCN
    journal, January 2009

    • Merikanto, J.; Spracklen, D. V.; Mann, G. W.
    • Atmospheric Chemistry and Physics, Vol. 9, Issue 21
    • DOI: 10.5194/acp-9-8601-2009

    Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
    journal, August 2011

    • Kirkby, Jasper; Curtius, Joachim; Almeida, João
    • Nature, Vol. 476, Issue 7361
    • DOI: 10.1038/nature10343

    Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene
    journal, February 2004


    Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions
    journal, January 2013

    • Artaxo, Paulo; Rizzo, Luciana V.; Brito, Joel F.
    • Faraday Discussions, Vol. 165
    • DOI: 10.1039/c3fd00052d

    Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)
    journal, January 2016

    • Martin, S. T.; Artaxo, P.; Machado, L. A. T.
    • Atmospheric Chemistry and Physics, Vol. 16, Issue 8
    • DOI: 10.5194/acp-16-4785-2016

    ATMOSPHERE: Aerosols Before Pollution
    journal, January 2007


    Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
    journal, September 2010


    Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon
    journal, August 2012


    New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate
    journal, July 2019

    • Lee, Shan-Hu; Gordon, Hamish; Yu, Huan
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 13
    • DOI: 10.1029/2018jd029356

    Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study
    journal, January 2019

    • Tiszenkel, Lee; Stangl, Chris; Krasnomowitz, Justin
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 13
    • DOI: 10.5194/acp-19-8915-2019

    New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate
    journal, July 2019

    • Lee, Shan-Hu; Gordon, Hamish; Yu, Huan
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 13
    • DOI: 10.1029/2018jd029356

    Sensitivities of Amazonian clouds to aerosols and updraft speed
    journal, January 2017

    • Cecchini, Micael A.; Machado, Luiz A. T.; Andreae, Meinrat O.
    • Atmospheric Chemistry and Physics, Vol. 17, Issue 16
    • DOI: 10.5194/acp-17-10037-2017

    Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory
    journal, January 2019

    • Pöhlker, Christopher; Walter, David; Paulsen, Hauke
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 13
    • DOI: 10.5194/acp-19-8425-2019

    Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study
    journal, January 2019

    • Tiszenkel, Lee; Stangl, Chris; Krasnomowitz, Justin
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 13
    • DOI: 10.5194/acp-19-8915-2019