skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

Abstract

ABSTRACT Photobiologically synthesized hydrogen (H 2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H 2production, a highly perplexing phenomenon because H 2evolving enzymes are O 2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized amore » chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.« less

Authors:
; ORCiD logo; ; ; ; ; ; ; ; ORCiD logo;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1339864
Report Number(s):
PNNL-SA-113160
Journal ID: ISSN 0099-2240; 48680; KP1601010
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied and Environmental Microbiology; Journal Volume: 82; Journal Issue: 24
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Environmental Molecular Sciences Laboratory

Citation Formats

Sadler, Natalie C., Bernstein, Hans C., Melnicki, Matthew R., Charania, Moiz A., Hill, Eric A., Anderson, Lindsey N., Monroe, Matthew E., Smith, Richard D., Beliaev, Alexander S., Wright, Aaron T., and Nojiri, H. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142. United States: N. p., 2016. Web. doi:10.1128/AEM.02098-16.
Sadler, Natalie C., Bernstein, Hans C., Melnicki, Matthew R., Charania, Moiz A., Hill, Eric A., Anderson, Lindsey N., Monroe, Matthew E., Smith, Richard D., Beliaev, Alexander S., Wright, Aaron T., & Nojiri, H. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142. United States. doi:10.1128/AEM.02098-16.
Sadler, Natalie C., Bernstein, Hans C., Melnicki, Matthew R., Charania, Moiz A., Hill, Eric A., Anderson, Lindsey N., Monroe, Matthew E., Smith, Richard D., Beliaev, Alexander S., Wright, Aaron T., and Nojiri, H. 2016. "Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142". United States. doi:10.1128/AEM.02098-16.
@article{osti_1339864,
title = {Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142},
author = {Sadler, Natalie C. and Bernstein, Hans C. and Melnicki, Matthew R. and Charania, Moiz A. and Hill, Eric A. and Anderson, Lindsey N. and Monroe, Matthew E. and Smith, Richard D. and Beliaev, Alexander S. and Wright, Aaron T. and Nojiri, H.},
abstractNote = {ABSTRACT Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2production, a highly perplexing phenomenon because H2evolving enzymes are O2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.},
doi = {10.1128/AEM.02098-16},
journal = {Applied and Environmental Microbiology},
number = 24,
volume = 82,
place = {United States},
year = 2016,
month =
}
  • We analyzed the metabolic rhythms and differential gene transcription in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC51142 under N₂-fixing conditions with 12h light-12h dark cycles followed by 36 h continuous light. Cultures were grown in a 6-L bioreactor that was specially designed for photosynthetic microorganisms and that permitted continuous monitoring of parameters such as pH and dissolved oxygen. Our main objective was to determine the strategies used by these cells to perform N₂ fixation under normal day-night conditions, as well as under greater stress caused by continuous light. Our results strongly suggested that the level of N₂ fixation is dependentmore » upon respiration for energy production and for removal of intracellular O₂. We determined that N₂ fixation cycled in continuous light, but that the N₂ fixation peak was lower and that glycogen degradation and respiration were also lower under these conditions. We also demonstrated that nifH (the gene encoding the Fe protein) and nifB and nifX were strongly induced in the continuous light; this is consistent with the mode of operation of these proteins relative to the MoFe protein and suggested that any regulation of N₂ fixation was at a posttranscriptional level. Also, many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione) were strongly induced during N₂ fixation in continuous light. We suggest that these carriers were required to generate enhanced cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of enhanced O₂, respectively.« less
  • Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements.more » Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.« less
  • Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements.more » Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were ualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.« less
  • Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes and we performed quantitative proteome analysis of Cyanothece ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period,more » together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose-phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H2 producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822, and allows an in-depth comparative analysis of major physiological and biochemical processes that influence H2-production in both the strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large scale H2 production.« less
  • This study combines transcriptomic and proteomic profiling to provide new insights on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H 2 production in the model cyanobacterium, Cyanothece sp. ATCC 51142. To date, the proposed mechanisms used to describe the energy metabolism processes that support H 2 production in Cyanothece 51142 have assumed that ATP and reductant requirements are derived solely from glycogen oxidation and/or cyclic-electron flow around photosystem I. The results from this study present and test an alternative hypothesis by showing that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and aremore » synchronized with nitrogenase expression and H 2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H 2 production and highlight the likely role of photocatalytic H 2O oxidation as a major participating process.« less