skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Boundary Dam spillway using an Autonomous Sensor Fish Device

Abstract

Fish passage conditions over spillways are important for the operations of hydroelectric dams because spillways are usually considered as a common alternative passage route to divert fish from the turbines. The objectives of this study were to determine the relative potential of fish injury during spillway passage both before and after the installation of baffle blocks at Boundary Dam, and to provide validation data for a model being used to predict total dissolved gas levels. Sensor Fish were deployed through a release system mounted on the face of the dam in the forebay. Three treatments, based on the lateral position on the spillway, were evaluated for both the baseline and post-modification evaluations: Left Middle, Right Middle, and Right. No significant acceleration events were detected in the forebay, gate, or transition regions for any release location; events were only observed on the chute and in the tailrace. Baseline acceleration events observed in the chute region were all classified as strikes, whereas post-modification events included strike and shear on the chute. While the addition of baffle blocks increased the number of significant events observed on the spillway chute, overall fewer events were observed in the tailrace post-modification. Analysis of lateral positioning ofmore » passage indicated that the Right Middle treatment was potentially less injurious to fish based on relative frequency of significant events at each location. The construction of baffle blocks on the spillway visibly changed the flow regime. Prior to installation the flow jet was relatively thin, impacting the tailrace as a coherent stream that plunged deeply, possibly contributing to total dissolved gas production. Following baffle block construction, the discharge jet was more fragmented, potentially disrupting the plunge depth and decreasing the time that bubbles would be at depth in the plunge pool. The results in this study support the expected performance of the modified spillway chute: the addition of the baffle blocks generally lessened the depth and impact of entry. This study provides information that can be used to help design and operate spillways for improving fish passage conditions.« less

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1339792
Report Number(s):
PNNL-SA-113125
Journal ID: ISSN 1570-6443; WN0219060
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Hydro-environment Research; Journal Volume: 14; Journal Issue: C
Country of Publication:
United States
Language:
English
Subject:
Spillway; total dissolved gas

Citation Formats

Deng, Z. D., Duncan, J. P., Arnold, J. L., Fu, T., Martinez, J., Lu, J., Titzler, P. S., Zhou, D., and Mueller, R. P. Evaluation of Boundary Dam spillway using an Autonomous Sensor Fish Device. United States: N. p., 2017. Web. doi:10.1016/j.jher.2016.10.004.
Deng, Z. D., Duncan, J. P., Arnold, J. L., Fu, T., Martinez, J., Lu, J., Titzler, P. S., Zhou, D., & Mueller, R. P. Evaluation of Boundary Dam spillway using an Autonomous Sensor Fish Device. United States. doi:10.1016/j.jher.2016.10.004.
Deng, Z. D., Duncan, J. P., Arnold, J. L., Fu, T., Martinez, J., Lu, J., Titzler, P. S., Zhou, D., and Mueller, R. P. Wed . "Evaluation of Boundary Dam spillway using an Autonomous Sensor Fish Device". United States. doi:10.1016/j.jher.2016.10.004.
@article{osti_1339792,
title = {Evaluation of Boundary Dam spillway using an Autonomous Sensor Fish Device},
author = {Deng, Z. D. and Duncan, J. P. and Arnold, J. L. and Fu, T. and Martinez, J. and Lu, J. and Titzler, P. S. and Zhou, D. and Mueller, R. P.},
abstractNote = {Fish passage conditions over spillways are important for the operations of hydroelectric dams because spillways are usually considered as a common alternative passage route to divert fish from the turbines. The objectives of this study were to determine the relative potential of fish injury during spillway passage both before and after the installation of baffle blocks at Boundary Dam, and to provide validation data for a model being used to predict total dissolved gas levels. Sensor Fish were deployed through a release system mounted on the face of the dam in the forebay. Three treatments, based on the lateral position on the spillway, were evaluated for both the baseline and post-modification evaluations: Left Middle, Right Middle, and Right. No significant acceleration events were detected in the forebay, gate, or transition regions for any release location; events were only observed on the chute and in the tailrace. Baseline acceleration events observed in the chute region were all classified as strikes, whereas post-modification events included strike and shear on the chute. While the addition of baffle blocks increased the number of significant events observed on the spillway chute, overall fewer events were observed in the tailrace post-modification. Analysis of lateral positioning of passage indicated that the Right Middle treatment was potentially less injurious to fish based on relative frequency of significant events at each location. The construction of baffle blocks on the spillway visibly changed the flow regime. Prior to installation the flow jet was relatively thin, impacting the tailrace as a coherent stream that plunged deeply, possibly contributing to total dissolved gas production. Following baffle block construction, the discharge jet was more fragmented, potentially disrupting the plunge depth and decreasing the time that bubbles would be at depth in the plunge pool. The results in this study support the expected performance of the modified spillway chute: the addition of the baffle blocks generally lessened the depth and impact of entry. This study provides information that can be used to help design and operate spillways for improving fish passage conditions.},
doi = {10.1016/j.jher.2016.10.004},
journal = {Journal of Hydro-environment Research},
number = C,
volume = 14,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}
  • Fish passage conditions through two spillways, a Francis turbine, and a regulating outlet (RO) at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions within the routes. The study was performed in July, October, and December 2009 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe strike,more » collision, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Detroit Dam indicates that the RO passage route through the 5-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine and spillway passage. However, none of the passage routes tested is safe for juvenile salmonid passage.« less
  • This report summarizes the characterization of spillway passage conditions at The Dalles Dam in 2006 and the effort to complete a comprehensive database for data sets from The Dalles Dam spillway Sensor Fish and balloon-tagged live fish experiments. Through The Dalles Dam spillway case study, Pacific Northwest National Laboratory (PNNL) researchers evaluated the database as an efficient means for accessing and retrieving system-wide data for the U.S Army Corps of Engineers (USACE).
  • Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help the design of more fish-friendly turbines for new hydroelectric dams or the rehabilitations of existing dams.« less
  • Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help the design of more fish-friendly turbines for new hydroelectric dams or the rehabilitations of existing dams.« less