skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Teaching Outside the Classroom: Field Trips in Crystallography Education for Chemistry Students

; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Education; Journal Volume: 93; Journal Issue: 9
Country of Publication:
United States

Citation Formats

Malbrecht, Brian J., Campbell, Michael G., Chen, Yu-Sheng, and Zheng, Shao-Liang. Teaching Outside the Classroom: Field Trips in Crystallography Education for Chemistry Students. United States: N. p., 2016. Web. doi:10.1021/acs.jchemed.6b00073.
Malbrecht, Brian J., Campbell, Michael G., Chen, Yu-Sheng, & Zheng, Shao-Liang. Teaching Outside the Classroom: Field Trips in Crystallography Education for Chemistry Students. United States. doi:10.1021/acs.jchemed.6b00073.
Malbrecht, Brian J., Campbell, Michael G., Chen, Yu-Sheng, and Zheng, Shao-Liang. Tue . "Teaching Outside the Classroom: Field Trips in Crystallography Education for Chemistry Students". United States. doi:10.1021/acs.jchemed.6b00073.
title = {Teaching Outside the Classroom: Field Trips in Crystallography Education for Chemistry Students},
author = {Malbrecht, Brian J. and Campbell, Michael G. and Chen, Yu-Sheng and Zheng, Shao-Liang},
abstractNote = {},
doi = {10.1021/acs.jchemed.6b00073},
journal = {Journal of Chemical Education},
number = 9,
volume = 93,
place = {United States},
year = {Tue Sep 13 00:00:00 EDT 2016},
month = {Tue Sep 13 00:00:00 EDT 2016}
  • Purpose: Case Method Teaching approach is a teaching tool used commonly in business school to challenge students with real-world situations—i.e. cases. The students are placed in the role of the decision maker and have to provide a solution based on the multitude of information provided. Specifically, students must develop an ability to quickly make sense of a complex problem, provide a solution incorporating all of the objectives (at time conflicting) and constraints, and communicate that solution in a succinct, professional and effective manner. The validity of the solution is highly dependent on the auxiliary information provided in the case andmore » the basic didactic knowledge of the student. A Case Method Teaching approach was developed and implemented into an on-going course focused on AAPM Task Group reports at UTHSCSA. Methods: A current course at UTHSCSA reviews and discusses 15 AAPM Task Group reports per semester. The course is structured into three topic modules: Imaging QA, Stereotactic Radiotherapy, and Special Patient Measurements—i.e. pacemakers, fetal dose. After a topic module is complete, the students are divided into groups (2–3 people) and are asked to review a case study related to the module topic. Students then provide a solution presented in an executive summary and class presentation. Results: Case studies were created to address each module topic. Through team work and whole-class discussion, a collaborative learning environment was established. Students additionally learned concepts such vendor relations, financial negotiations, capital project management, and competitive strategy. Conclusion: Case Method Teaching approach is an effective teaching tool to further enhance the learning experience of radiation oncology physics students by presenting them with though-provoking dilemmas that require students to distinguish pertinent from peripheral information, formulate strategies and recommendations for action, and confront obstacles to implementation.« less
  • The goal of the Modern Miracle Medical Machines project is to promote pre-med students' interest in physics by using the context of contemporary medical imaging. The X-ray medical imaging learning module will be a central part of this effort. To investigate students' transfer of learning in this context we have conducted a series of clinical and teaching interviews. In the latter interview, some of the proposed learning materials were used. The students brought to our discussion pieces of knowledge transferred from very different sources such as their own X-ray experiences, previous learning and the mass media. This transfer seems tomore » result in more or less firm mental models which often are not always internally consistent or coherent.« less
  • Purpose: This work describes how a non-clinical, research and teaching Linac is used as an extremely motivating and exciting way to introduce students to medical physics. Methods: The dedicated facility was inaugurated in 2014. The facility is composed of a fully equipped and functional state-of-the-art Varian TrueBeam Linac and a complete set of physics instruments and QA phantoms for the Linac and onboard imaging. The Linac bunker and treatment console are oversized such that a class of 12–15 can comfortably fit, seated if needed for longer sessions. A 3cr undergraduate laboratory course that includes medical imaging, x-ray source characterization (mAs,more » kVp, and filtering) and many others including an introductory Linac laboratory was created. The latter is composed of one general 4-hours session and a weekly 4-hours session for teams of two students. The general session includes a hands-on presentation of the Linac, its environment and a formal safety and radiation protection course (with an exam). Results: Since the winter of 2015, senior undergraduate (total of 15) pursuing either the medical physics or the biomedical engineering tracks can register. At the Linac, the students are allowed full control of the experiments, including set-up and irradiation. Supervisor intervention is limited to safety concerns for students or equipment. Measurements of output factors using two chambers (regular and small field) for various field sizes (1×1 to 30×30 cm{sup 2}) and of detailed depth-dose curves for 6 MV, 6 and 12 MeV beams are to be performed and discussed in a formal report. Conclusion: Full access to, and control of, a Linac is the high point of this course. It provides a glimpse of medical physics and generates an experimental background for those continuing to CAMPEP programs. This dedicated, non-clinical facility further enable enhance CAMPEP graduate teaching and research activities not possible with a clinical device.« less
  • Vic Montemayor - No one has been more passionate about improving the quality and effectiveness of the teaching of Medical Physics than Bill Hendee. It was in August of 2008 that the first AAPM Workshop on Becoming a Better Teacher of Medical Physics was held, organized and run by Bill Hendee. This was followed up in July of 2010 with a summer school on the same topic, again organized by Bill. There has been continued interest in alternate approaches to teaching medical physics since those initial gatherings. The momentum established by these workshops is made clear each year in themore » annual Innovation in Medical Physics Education session, which highlights work being done in all forms of medical physics education, from one-on-one residencies or classroom presentations to large-scale program revisions and on-line resources for international audiences. This symposium, presented on behalf of the Education Council, highlights the work of three finalists from past Innovation in Education sessions. Each will be presenting their approaches to and innovations in teaching medical physics. It is hoped that audience members interested in trying something new in their teaching of medical physics will find some of these ideas and approaches readily applicable to their own classrooms. Rebecca Howell - The presentation will discuss ways to maximize classroom learning, i.e., increasing the amount of material covered while also enhancing students’ understanding of the broader implications of the course topics. Specifically, the presentation will focus on two teaching methodologies, project based learning and flip learning. These teaching methods will be illustrated using an example of graduate medical physics course where both are used in conjunction with traditional lectures. Additionally, the presentation will focus on our experience implementing these methods including challenges that were overcome. Jay Burmeister - My presentation will discuss the incorporation of active learning techniques into a traditional medical physics classroom course. I will describe these techniques and how they were implemented as well as student performance before and after implementation. Student feedback indicated that these course changes improved their ability to actively assimilate the course content, thus improving their understanding of the material. Shahid Naqvi - My talk will focus on ways to help students visualize crucial concepts that lie at the core of radiation physics. Although particle tracks generated by Monte Carlo simulations have served as an indispensable visualization tool, students often struggle to resolve the underlying physics from a simultaneous jumble of tracks. We can clarify the physics by “coding” the tracks, e.g., by coloring the tracks according to their “starting” or “crossing” regions. The regionally-coded tracks when overlaid with dose distributions help the students see the elusive connection between dose, kerma and electronic disequilibrium. Tracks coded according to local energy or energy-loss rate can illustrate the need for stopping power corrections in electron beams and explain the Bragg peak in a proton beam. Coding tracks according to parent interaction type and order can clarify the often misunderstood distinction between primary and scatter dose. The students can thus see the “whole” simultaneously with the “sum of the parts,” which enhances their physical insight and creates a sustainable foundation for further learning. After the presentations the speakers and moderator will be open to questions and discussion with the audience members. Learning Objectives: Be able to explain Project-Based Learning and how can it be incorporated into a Medical Physics classroom. Be able to explain Flipped Learning and how can it be incorporated into a Medical Physics classroom. Be able to explain active-learning strategies for the teaching of Medical Physics. Be able to explain how Monte Carlo simulations can be used to deepen a student’s understanding of radiation physics and dosimetry.« less