skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam

Abstract

A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

Inventors:
; ; ;
Publication Date:
Research Org.:
Dow Global Technologies LLC, Midland, MI (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1339635
Patent Number(s):
9,546,256
Application Number:
14/437,088
Assignee:
Dow Global Technologies LLC (Midland, MI) DOEEE
DOE Contract Number:
EE0003916
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Nov 11
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

King, Bruce A., Patankar, Kshitish A., Costeux, Stephane, and Jeon, Hyun K. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam. United States: N. p., 2017. Web.
King, Bruce A., Patankar, Kshitish A., Costeux, Stephane, & Jeon, Hyun K. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam. United States.
King, Bruce A., Patankar, Kshitish A., Costeux, Stephane, and Jeon, Hyun K. Tue . "Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam". United States. doi:. https://www.osti.gov/servlets/purl/1339635.
@article{osti_1339635,
title = {Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam},
author = {King, Bruce A. and Patankar, Kshitish A. and Costeux, Stephane and Jeon, Hyun K.},
abstractNote = {A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 17 00:00:00 EST 2017},
month = {Tue Jan 17 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • Polyhedral Oligomeric SilSesquioxanes (POSS) are structurally well defined cage-like molecules represented by the generic formula (RSiO{sub 1.5}){sub n}. POSS compounds possess a unique hybrid composition with an oxygen to silicon ratio of 1.5, intermediate between that for silica and silicone. An entire monomer catalogue (chemical tree) of hybrid POSS-based reagents suitable for polymerization and grafting reactions has been developed from R{sub 7}Si{sub 7}O{sub 9}(OH){sub 3} and related precursors. POSS reagents containing no more than one or two reactive groups enable the preparation of hybrid materials with desirable physical properties such as thermoplasticity, and elasticity. An overview of the synthesis ofmore » POSS monomers and thermoplastic POSS-acrylic polymers is given. The thermal and physical properties for POSS-acrylic monomers, homopolymers, and copolymers, and blends with poly(methylmethacrylate) are described.« less
  • The authors have taken a unique approach to the synthesis and study of hybrid organic/inorganic materials. The method involves synthesizing nano-size inorganic P{sub 1}R{sub 7}Si{sub 8}O{sub 12} clusters which contain seven inert R groups for solubility and only one functional P group for polymerization. This strategy permits the synthesis of melt processable, linear hybrid polymers containing pendent inorganic clusters and allows one to study the effect these clusters have on chain motions and polymer properties. The synthesis of styrene-based polyhedral oligomeric silsesquioxane (POSS) macromers, their free radical homopolymerization and copolymerizations with varying amounts of 4-methylstyrene, and analysis of the effectmore » of the pendent POSS group is presented. All of these polymers decompose under nitrogen between 365 and 400 C, and the glass transitions for these materials vary from around 110 C up to the decomposition point. Both T{sub dec} and T{sub g} increase with increasing POSS content. The shorter the spacer unit between the POSS group and the polymer chain the higher the T{sub g}. Interestingly, a slight change in the inert R groups on the POSS cluster has a large effect on the glass transition indicating that POSS-POSS interactions have an effect on chain mobility.« less
  • No abstract prepared.
  • Self-assembly and chain-folding in well-defined oligomeric polyethylene-block-poly(ethylene oxide)-block-polyhedral oligomeric silsesquioxane (PE-b-PEO-b-POSS) triblock molecules were studied by small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), and transmission electron microscopy (TEM). The triblock oligomers were synthesized by attaching two kinds of functional POSS molecules, namely, isocyanatopropyldimethylsilylisobutyl-POSS (Ib-POSS) and isocyanatopropyldimethylsilylcyclopentyl-POSS (Cp-POSS), to a hydroxyl-terminated PE-b-PEO-OH diblock oligomer (denoted as E{sub 39}EO{sub 23}) via urethane reactions. In these triblock oligomers, both PE and POSS were crystalline, whereas PEO became amorphous due to tethering of its both ends to other two blocks. In the crystalline state, PE chains tilted 32{sup o} from the lamellar normal,more » and both Ib-POSS and Cp-POSS molecules stacked into four-layer (ABCA) lamellar crystals, having the same trigonal (R{bar 3}m) symmetry as in pure POSS crystals. Because the cross-sectional area for a PE chain in the PE crystals (0.216 nm{sup 2}/chain) at the interface was much smaller than that for a POSS molecule in POSS crystals (1.136 nm{sup 2}/molecule), the self-assembly and PE chain-folding were substantially affected by the sequence of PE and POSS crystallization when crystallizing from the melt. For example, PE crystallization induced the POSS crystallization in the bulk E{sub 39}EO{sub 23}-Ib-POSS, and thus extended-chain PE crystals were observed. The grains of crystalline lamellae again were small with often highly curved lamellar crystals. This could also be attributed to the unbalanced interfacial areas for POSS and PE blocks (the interfacial area ratio being 2.6 for interdigitated PE crystals, i.e., two PE chains per POSS molecule). For the E{sub 39}EO{sub 23}-Cp-POSS triblock oligomer, POSS molecules crystallized before PE crystallization, forming a well-defined lamellar structure. The preexisting POSS crystals confined the PE crystallization, and thus almost once-folded PE crystals were obtained. Because the interfacial area ratio between POSS and PE blocks decreased to 1.3, the crystalline lamellae were straight and their grains were relatively large. On the basis of this study, we conclude that confinement effect plays an important role on chain-folding of crystalline block oligomers, which in turn determines the unbalanced cross-sectional areas between chemically different blocks and finally dictates their final crystalline morphology.« less
  • In this work, a novel cube-shaped cationic lipid based on the imidazolium salt of polyhedral oligomeric silsesquioxane (POSS) was complexed with double-stranded DNA. Because of the negative spontaneous curvature of the cationic POSS imidazolium lipid, an inverted hexagonal phase resulted above the melting point of POSS crystals. Depending on the competition between the crystallization of POSS molecules and the negative spontaneous curvature of cationic POSS imidazolium lipids, different self-assembled phase morphologies were obtained. A lamellar phase was obtained when the POSS crystallization was relatively slow. When the POSS crystallization was fast, an inverted hexagonal phase was obtained with POSS lamellarmore » crystals grown in the interstitials of DNA cylinders. On the basis of a circular dichroism study, double-stranded DNA adopted the B-form helical conformation in the inverted hexagonal phase, whereas the helical conformation was largely destroyed in the lamellar phase.« less