skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: All 2D, high mobility, flexible, transparent thin film transistor

Abstract

A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.

Inventors:
; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1339546
Patent Number(s):
9,548,394
Application Number:
14/692,596
Assignee:
UChicago Argonne, LLC (Chicago, IL) ANL
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Apr 21
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Das, Saptarshi, Sumant, Anirudha V., and Roelofs, Andreas. All 2D, high mobility, flexible, transparent thin film transistor. United States: N. p., 2017. Web.
Das, Saptarshi, Sumant, Anirudha V., & Roelofs, Andreas. All 2D, high mobility, flexible, transparent thin film transistor. United States.
Das, Saptarshi, Sumant, Anirudha V., and Roelofs, Andreas. Tue . "All 2D, high mobility, flexible, transparent thin film transistor". United States. doi:. https://www.osti.gov/servlets/purl/1339546.
@article{osti_1339546,
title = {All 2D, high mobility, flexible, transparent thin film transistor},
author = {Das, Saptarshi and Sumant, Anirudha V. and Roelofs, Andreas},
abstractNote = {A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 17 00:00:00 EST 2017},
month = {Tue Jan 17 00:00:00 EST 2017}
}

Patent:

Save / Share:

Works referenced in this record:

Roll-to-roll production of 30-inch graphene films for transparent electrodes
journal, June 2010

  • Bae, Sukang; Kim, Hyeongkeun; Lee, Youngbin
  • Nature Nanotechnology, Vol. 5, Issue 8, p. 574-578
  • DOI: 10.1038/nnano.2010.132

Single-Layer MoS2 Mechanical Resonators
journal, October 2013

  • Castellanos-Gomez, Andres; van Leeuwen, Ronald; Buscema, Michele
  • Advanced Materials, Vol. 25, Issue 46, p. 6719-6723
  • DOI: 10.1002/adma.201303569

Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics
journal, November 2010

  • Chen, Xiangyu; Akinwande, Deji; Lee, Kyeong-Jae
  • IEEE Transactions on Electron Devices, Vol. 57, Issue 11, p. 3137-3143
  • DOI: 10.1109/TED.2010.2069562

Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices
conference, December 2008


Evaluating the scalability of multilayer MoS2 transistors
conference, June 2013


On the Importance of Bandgap Formation in Graphene for Analog Device Applications
journal, September 2011

  • Das, Saptarshi; Appenzeller, Joerg
  • IEEE Transactions on Nanotechnology, Vol. 10, Issue 5, p. 1093-1098
  • DOI: 10.1109/TNANO.2011.2109007

Screening and interlayer coupling in multilayer MoS2
journal, March 2013

  • Das, Saptarshi; Appenzeller, Joerg
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 7, Issue 4, p. 268-273
  • DOI: 10.1002/pssr.201307015

Where Does the Current Flow in Two-Dimensional Layered Systems?
journal, June 2013

  • Das, Saptarshi; Appenzeller, Joerg
  • Nano Letters, Vol. 13, Issue 7, p. 3396-3402
  • DOI: 10.1021/nl401831u

WSe2 field effect transistors with enhanced ambipolar characteristics
journal, September 2013

  • Das, Saptarshi; Appenzeller, Joerg
  • Applied Physics Letters, Vol. 103, Issue 10, Article No. 103501
  • DOI: 10.1063/1.4820408

High Performance Multilayer MoS2Transistors with Scandium Contacts
journal, December 2012

  • Das, Saptarshi; Chen, Hong-Yan; Penumatcha, Ashish Verma
  • Nano Letters, Vol. 13, Issue 1, p. 100-105
  • DOI: 10.1021/nl303583v

Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides
journal, January 2014

  • Das, Saptarshi; Prakash, Abhijith; Salazar, Ramon
  • ACS Nano, Vol. 8, Issue 2, p. 1681-1689
  • DOI: 10.1021/nn406603h

Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Organic Thin Film Transistors for Large Area Electronics
journal, January 2002


High-performance thin-film transistors using semiconductor nanowires and nanoribbons
journal, September 2003

  • Duan, Xiangfeng; Niu, Chunming; Sahi, Vijendra
  • Nature, Vol. 425, Issue 6955, p. 274-278
  • DOI: 10.1038/nature01996

Photoluminescence from Chemically Exfoliated MoS2
journal, December 2011

  • Eda, Goki; Yamaguchi, Hisato; Voiry, Damien
  • Nano Letters, Vol. 11, Issue 12, p. 5111-5116
  • DOI: 10.1021/nl201874w

Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays
journal, November 2008

  • Engel, Michael; Small, Joshua P.; Steiner, Mathias
  • ACS Nano, Vol. 2, Issue 12, p. 2445-2452
  • DOI: 10.1021/nn800708w

Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications
journal, July 2012


Organic thin-film transistors
journal, April 2010

  • Klauk, Hagen
  • Chemical Society Reviews, Vol. 39, Issue 7, p. 2643-2666
  • DOI: 10.1039/B909902F

Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers
journal, November 2012

  • Larentis, Stefano; Fallahazad, Babak; Tutuc, Emanuel
  • Applied Physics Letters, Vol. 101, Issue 22, Article No. 223104
  • DOI: 10.1063/1.4768218

Large-Scale Synthesis of High-Quality Hexagonal Boron Nitride Nanosheets for Large-Area Graphene Electronics
journal, January 2012

  • Lee, Kang Hyuck; Shin, Hyeon-Jin; Lee, Jinyeong
  • Nano Letters, Vol. 12, Issue 2, p. 714-718
  • DOI: 10.1021/nl203635v

Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors
journal, September 2011

  • Liu, Leitao; Kumar, S. Bala; Ouyang, Yijian
  • IEEE Transactions on Electron Devices, Vol. 58, Issue 9, p. 3042-3047
  • DOI: 10.1109/TED.2011.2159221

Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic
journal, September 2004

  • Nathan, A.; Kumar, A.; Sakariya, K.
  • IEEE Journal of Solid-State Circuits, Vol. 39, Issue 9, p. 1477-1486
  • DOI: 10.1109/JSSC.2004.829373

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors
journal, November 2004

  • Nomura, Kenji; Ohta, Hiromichi; Takagi, Akihiro
  • Nature, Vol. 432, Issue 7016, p. 488-492
  • DOI: 10.1038/nature03090

High-mobility field-effect transistors based on transition metal dichalcogenides
journal, April 2004

  • Podzorov, V.; Gershenson, M. E.; Kloc, Ch.
  • Applied Physics Letters, Vol. 84, Issue 17, p. 3301-3303
  • DOI: 10.1063/1.1723695

The physics of amorphous-silicon thin-film transistors
journal, December 1989

  • Powell, M. J.
  • IEEE Transactions on Electron Devices, Vol. 36, Issue 12, p. 2753-2763
  • DOI: 10.1109/16.40933

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Emerging Photoluminescence in Monolayer MoS2
journal, April 2010

  • Splendiani, Andrea; Sun, Liang; Zhang, Yuanbo
  • Nano Letters, Vol. 10, Issue 4, p. 1271-1275
  • DOI: 10.1021/nl903868w

Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2
journal, October 2012

  • Tongay, Sefaattin; Zhou, Jian; Ataca, Can
  • Nano Letters, Vol. 12, Issue 11, p. 5576-5580
  • DOI: 10.1021/nl302584w

Integrated Circuits Based on Bilayer MoS2 Transistors
journal, January 2012

  • Wang, Han; Yu, Lili; Lee, Yi-Hsien
  • Nano Letters, Vol. 12, Issue 9, p. 4674-4680
  • DOI: 10.1021/nl302015v

Measurement of the quantum capacitance of graphene
journal, July 2009

  • Xia, Jilin; Chen, Fang; Li, Jinghong
  • Nature Nanotechnology, Vol. 4, Issue 8, p. 505-509
  • DOI: 10.1038/nnano.2009.177