skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pulsar timing can constrain primordial black holes in the LIGO mass window

Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 95; Journal Issue: 2; Related Information: CHORUS Timestamp: 2017-01-12 13:13:43; Journal ID: ISSN 2470-0010
American Physical Society
Country of Publication:
United States

Citation Formats

Schutz, Katelin, and Liu, Adrian. Pulsar timing can constrain primordial black holes in the LIGO mass window. United States: N. p., 2017. Web. doi:10.1103/PhysRevD.95.023002.
Schutz, Katelin, & Liu, Adrian. Pulsar timing can constrain primordial black holes in the LIGO mass window. United States. doi:10.1103/PhysRevD.95.023002.
Schutz, Katelin, and Liu, Adrian. Wed . "Pulsar timing can constrain primordial black holes in the LIGO mass window". United States. doi:10.1103/PhysRevD.95.023002.
title = {Pulsar timing can constrain primordial black holes in the LIGO mass window},
author = {Schutz, Katelin and Liu, Adrian},
abstractNote = {},
doi = {10.1103/PhysRevD.95.023002},
journal = {Physical Review D},
number = 2,
volume = 95,
place = {United States},
year = {Wed Jan 11 00:00:00 EST 2017},
month = {Wed Jan 11 00:00:00 EST 2017}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1103/PhysRevD.95.023002

Citation Metrics:
Cited by: 13works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 8
  • LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z ≳ 10, where first luminous sources formed. We quantify the resultant increase in high- z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increasedmore » abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2–5 μ m can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs.« less
  • Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, i.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermallymore » dominant GRB 101219B, whose initial jet launching radius, r {sub 0}, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass M {sub BH} ∼ 5–9 M {sub ⊙}, spin parameter a {sub *} ≳ 0.6, and disk mass 3 M {sub ⊙} ≲ M {sub disk} ≲ 4 M {sub ⊙}. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.« less
  • We studied the possibility whether the massive primordial black holes (PBHs) surviving today can be produced in hybrid inflation. Though it is of great interest since such PBHs can be the candidate for dark matter or seeds of the supermassive black holes in galaxies, there have not been quantitatively complete works yet because of the non-perturbative behavior around the critical point of hybrid inflation. Therefore, combining the stochastic and δ N formalism, we numerically calculated the curvature perturbations in a non-perturbative way and found, without any specific assumption of the types of hybrid inflation, PBHs are rather overproduced when themore » waterfall phase of hybrid inflation continues so long that the PBH scale is well enlarged and the corresponding PBH mass becomes sizable enough.« less
  • A promising mechanism to form intermediate-mass black holes is the runaway merger in dense star clusters, where main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole (BH). In this paper, we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code for N-body systems with N as high as 10{sup 6} stars. Our code now includes an explicit treatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs,more » as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation, we generally see a decrease in core-collapse time (t{sub cc}). Although for smaller degrees of primordial mass segregation this decrease in t{sub cc} is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time decreasing t{sub cc}. The final mass of the VMS formed is always close to {approx}10{sup -3} of the total cluster mass, in agreement with previous studies and is reminiscent of the observed correlation between the central BH mass and the bulge mass of the galaxies. As the degree of primordial mass segregation is increased, the mass of the VMS increases at most by a factor of three. Flatter IMFs generally increase the average mass in the whole cluster, which increases t{sub cc}. For the range of IMFs investigated in this paper, this increase in t{sub cc} is to some degree balanced by stellar collisions, which accelerate core collapse. Thus, there is no significant change in t{sub cc} for the somewhat flatter global IMFs observed in very young massive clusters.« less