skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superhydrophobic, diatomaceous earth comprising bandages and method of making the same

Abstract

A bandage comprising a substrate having a first surface with a plurality of superhydrophobic particles attached to the first surface. The plurality of superhydrophobic particles can be porous diatomaceous earth particles having a hydrophobic layer conforming to the surfaces of the DE particles, where the hydrophobic layer is bound to the DE particles. The plurality of attached superhydrophobic particles can render the first surface superhydrophobic, while a second surface opposite the first surface can be hydrophilic or hydrophobic. The substrate can be breathable in order to maintain skin health for the tissue underlying the bandage. The substrate can be selected from porous films, apertured films, textiles, nonwoven materials, impregnated composites thereof, and combinations thereof.

Inventors:
;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1338955
Patent Number(s):
9,539,149
Application Number:
12/273,823
Assignee:
UT-BATTELLE, LLC (Oak Ridge, TN) ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2008 Nov 19
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Simpson, John T., and D'Urso, Brian R. Superhydrophobic, diatomaceous earth comprising bandages and method of making the same. United States: N. p., 2017. Web.
Simpson, John T., & D'Urso, Brian R. Superhydrophobic, diatomaceous earth comprising bandages and method of making the same. United States.
Simpson, John T., and D'Urso, Brian R. Tue . "Superhydrophobic, diatomaceous earth comprising bandages and method of making the same". United States. doi:. https://www.osti.gov/servlets/purl/1338955.
@article{osti_1338955,
title = {Superhydrophobic, diatomaceous earth comprising bandages and method of making the same},
author = {Simpson, John T. and D'Urso, Brian R.},
abstractNote = {A bandage comprising a substrate having a first surface with a plurality of superhydrophobic particles attached to the first surface. The plurality of superhydrophobic particles can be porous diatomaceous earth particles having a hydrophobic layer conforming to the surfaces of the DE particles, where the hydrophobic layer is bound to the DE particles. The plurality of attached superhydrophobic particles can render the first surface superhydrophobic, while a second surface opposite the first surface can be hydrophilic or hydrophobic. The substrate can be breathable in order to maintain skin health for the tissue underlying the bandage. The substrate can be selected from porous films, apertured films, textiles, nonwoven materials, impregnated composites thereof, and combinations thereof.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 10 00:00:00 EST 2017},
month = {Tue Jan 10 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • A bandage that includes a material, which can be breathable, having a first surface, and a plurality of superhydrophobic particles attached to the first surface. The plurality of superhydrophobic particles ranging in size from about 100 nanometers to about 10 micrometers. The superhydrophobic particles including a protrusive material defining a plurality of nanopores and a plurality of spaced apart nanostructures that define an external boundary of the hydrophobic particles. The nanopores providing a flow through porosity. The first surface can be rendered superhydrophobic by the attached superhydrophobic particles. The material can have a second surface opposite the first surface thatmore » is hydrophilic. The superhydrophobic particles can be adhered to the first surface by a binder. Also included is a method of making the bandages described herein.« less
  • A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.
  • An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.
  • Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.
  • Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.