skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rotary moving bed for CO.sub.2 separation and use of same

Abstract

A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.

Inventors:
; ;
Publication Date:
Research Org.:
EXXONMOBIL RESEARCH AND ENGINEERING COMPANY, Annandale, NJ (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1338954
Patent Number(s):
9,539,540
Application Number:
14/325,579
Assignee:
EXXONMOBIL RESEARCH AND ENGINEERING COMPANY (Annandale, NJ) NETL
DOE Contract Number:
NT0005497
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Jul 08
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Elliott, Jeannine Elizabeth, Copeland, Robert James, and McCall, Patrick P. Rotary moving bed for CO.sub.2 separation and use of same. United States: N. p., 2017. Web.
Elliott, Jeannine Elizabeth, Copeland, Robert James, & McCall, Patrick P. Rotary moving bed for CO.sub.2 separation and use of same. United States.
Elliott, Jeannine Elizabeth, Copeland, Robert James, and McCall, Patrick P. Tue . "Rotary moving bed for CO.sub.2 separation and use of same". United States. doi:. https://www.osti.gov/servlets/purl/1338954.
@article{osti_1338954,
title = {Rotary moving bed for CO.sub.2 separation and use of same},
author = {Elliott, Jeannine Elizabeth and Copeland, Robert James and McCall, Patrick P.},
abstractNote = {A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 10 00:00:00 EST 2017},
month = {Tue Jan 10 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • A system and method for separating and/or purification of CO.sub.2 gas from a CO.sub.2 feed stream is described. The system and method include a plurality of fixed sorbent beds, adsorption zones and desorption zones, where the sorbent beds are connected via valve and lines to create a simulated moving bed system, where the sorbent beds move from one adsorption position to another adsorption position, and then into one regeneration position to another regeneration position, and optionally back to an adsorption position. The system and method operate by concentration swing adsorption/desorption and by adsorptive/desorptive displacement.
  • A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption andmore » adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.« less
  • Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating themore » need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.« less
  • A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
  • Briefly described, embodiments of this disclosure, among others, include carbon dioxide (CO.sub.2) sorption structures, methods of making CO.sub.2 sorption structures, and methods of using CO.sub.2 sorption structures.