skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

Abstract

An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

Inventors:
; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1338905
Patent Number(s):
9,543,054
Application Number:
13/672,486
Assignee:
Alliance for Sustainable Energy, LLC (Golden, CO) NREL
DOE Contract Number:
AC36-08GO28308
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Nov 08
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Ban, Chunmei, Wu, Zhuangchun, and Dillon, Anne C. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries. United States: N. p., 2017. Web.
Ban, Chunmei, Wu, Zhuangchun, & Dillon, Anne C. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries. United States.
Ban, Chunmei, Wu, Zhuangchun, and Dillon, Anne C. Tue . "Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries". United States. doi:. https://www.osti.gov/servlets/purl/1338905.
@article{osti_1338905,
title = {Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries},
author = {Ban, Chunmei and Wu, Zhuangchun and Dillon, Anne C.},
abstractNote = {An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 10 00:00:00 EST 2017},
month = {Tue Jan 10 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • A binder-free, high-rate Ge-three dimensional (3D) graphene composite was synthesized by directly depositing Ge film atop 3D graphene grown by microwave plasma chemical vapor deposition on Ni substrate. The Ge-3D graphene structure demonstrates excellent electrochemical performance as a lithium ion battery (LIB) anode with a reversible capacity of 1140 mAh g{sup −1} at 1/3C over 100 cycles and 835 mAh g{sup −1} at 8C after 60 cycles, and significantly a discharge capacity of 186 mAh g{sup −1} was still achieved at 32C. The high capacity and outstanding stability of the Ge-3D graphene composite propose it as a promising electrode inmore » high-performance thin film LIBs.« less
  • Highlights: • CoO semisphere arrays are prepared by a template-assisted electrodeposition method. • Interconnected semisphere arrays are favorable for fast ion/electron transfer. • CoO semisphere arrays show excellent Li ion storage performance. - Abstract: Construction of hierarchical porous metal oxides arrays is critical for the development of high-performance electrochemical energy storage devices. Herein we report porous CoO semisphere arrays using an electrodeposited polystyrene template method. Interestingly, the as-prepared porous CoO semisphere arrays consist of bowl-like semispheres with diameters of ∼500 nm and show highly porous structure. As a preliminary test as anode for lithium ion batteries (LIBs), the porous CoOmore » semispheres arrays exhibit superior electrochemical performances with good cyclability (695.5 mAh g{sup −1} after 150 cycles at 0.5 A g{sup −1}) and high-rate capability. The porous semispherical architecture provides positive roles in the enhancement of electrochemical properties, including fast electronic transportation path, short diffusion of Li ion and high sufficient interfacial contact area between the active material and the electrolyte. The developed methodology enables a new fabrication of porous metal oxides with applications in electro-catalysis, optical and electrochemical devices.« less
  • Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less
  • Highlights: • Hierarchal CoFe{sub 2}O{sub 4} nanowire arrays are directly grown on flexible carbon cloth. • Porous CoFe{sub 2}O{sub 4} nanowires are composed of many nanocrystals of 20–40 nm. • CoFe{sub 2}O{sub 4} nanowire arrays exhibit excellent rate capability and cycling stability. • Integrated CoFe{sub 2}O{sub 4}/carbon cloth electrodes show high flexibility and areal capacity. - Abstract: A three-dimensional CoFe{sub 2}O{sub 4} nanowire array on carbon cloth was fabricated with a hydrothermal method together with a post-annealing treatment. As a binder-free and flexible anode material for LIBs, it showed an improved electrochemical performance with high cycling stability and excellent ratemore » capability. It exhibited an initial discharge capacity of 1615 mAh g{sup −1} and retained a reversible capacity of about 1204 mAh g{sup −1} after 200 cycles at a specific current of 500 mA g{sup −1}. The high capacity, outstanding rate performance and cycling stability can be attributed to the special configuration of hierarchal porous CoFe{sub 2}O{sub 4} nanowires on carbon cloth, which possess many advantages like short diffusion length, easy strain relaxation and fast electron transport. Moreover, the integrated CoFe{sub 2}O{sub 4} nanowires/carbon cloth electrode shows high flexibility and high areal capacity (2.41 mAh cm{sup −2}), which makes it suitable for use as a binder-free anode to build flexible LIBs.« less