skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

Abstract

Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

Authors:
 [1];  [1];  [2];  [3];  [1];  [4]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Tsinghua Univ., Beijing (People's Republic of China); Collaborative Innovation Center of Quantum Matter, Beijing (People's Republic of China); RIKEN Center for Emergent Matter Science (CEMS), Saitama (Japan)
  3. Southern Research, Birmingham, AL (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Aveiro, Aveiro (Portugal)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1338484
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nanotechnology
Additional Journal Information:
Journal Volume: 27; Journal Issue: 42; Journal ID: ISSN 0957-4484
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; scanning probe microscopy; ferroelectrics; cantilever dynamics

Citation Formats

Balke, Nina, Jesse, Stephen, Yu, Pu, Carmichael, Ben, Kalinin, Sergei V., and Tselev, Alexander. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. United States: N. p., 2016. Web. doi:10.1088/0957-4484/27/42/425707.
Balke, Nina, Jesse, Stephen, Yu, Pu, Carmichael, Ben, Kalinin, Sergei V., & Tselev, Alexander. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. United States. doi:10.1088/0957-4484/27/42/425707.
Balke, Nina, Jesse, Stephen, Yu, Pu, Carmichael, Ben, Kalinin, Sergei V., and Tselev, Alexander. 2016. "Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy". United States. doi:10.1088/0957-4484/27/42/425707. https://www.osti.gov/servlets/purl/1338484.
@article{osti_1338484,
title = {Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy},
author = {Balke, Nina and Jesse, Stephen and Yu, Pu and Carmichael, Ben and Kalinin, Sergei V. and Tselev, Alexander},
abstractNote = {Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.},
doi = {10.1088/0957-4484/27/42/425707},
journal = {Nanotechnology},
number = 42,
volume = 27,
place = {United States},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 1
  • Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less
  • Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.
  • The mechanism of dynamic force modes has been successfully applied to many atomic force microscopy (AFM) applications, such as tapping mode and phase imaging. The high-order flexural vibration modes are recent advancement of AFM dynamic force modes. AFM optical lever detection sensitivity plays a major role in dynamic force modes because it determines the accuracy in mapping surface morphology, distinguishing various tip-surface interactions, and measuring the strength of the tip-surface interactions. In this work, we have analyzed optimization and calibration of the optical lever detection sensitivity for an AFM cantilever-tip ensemble vibrating in high-order flexural modes and simultaneously experiencing amore » wide range and variety of tip-sample interactions. It is found that the optimal detection sensitivity depends on the vibration mode, the ratio of the force constant of tip-sample interactions to the cantilever stiffness, as well as the incident laser spot size and its location on the cantilever. It is also found that the optimal detection sensitivity is less dependent on the strength of tip-sample interactions for high-order flexural modes relative to the fundamental mode, i.e., tapping mode. When the force constant of tip-sample interactions significantly exceeds the cantilever stiffness, the optimal detection sensitivity occurs only when the laser spot locates at a certain distance from the cantilever-tip end. Thus, in addition to the 'globally optimized detection sensitivity', the 'tip optimized detection sensitivity' is also determined. Finally, we have proposed a calibration method to determine the actual AFM detection sensitivity in high-order flexural vibration modes against the static end-load sensitivity that is obtained traditionally by measuring a force-distance curve on a hard substrate in the contact mode.« less
  • A surface of epoxy-impregnated hardened cement paste was investigated using a novel atomic force microscopy (AFM) imaging mode that allows for the quantitative mapping of the local elastic modulus. The analyzed surface was previously prepared using focussed ion beam milling. The same surface was also characterized by electron microscopy and energy-dispersive X-ray spectroscopy. We demonstrate the capability of this quantitative nanomechanical mapping to provide information on the local distribution of the elastic modulus (from about 1 to about 100 GPa) with a spatial resolution in the range of decananometers, that corresponds to that of low-keV back-scattered electron imaging. Despite somemore » surface roughness which affects the measured nanomechanical properties it is shown that topography, adhesion and Young's modulus can be clearly distinguished. The quantitative mapping of the local elastic modulus is able to discriminate between phases in the cement paste microstructure that cannot be distinguished from the corresponding back-scattered electron images.« less