skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final DOE-ASR Report for the Project “Advancing our Understanding and the Remote Sensing of Ice Clouds”

Abstract

This project has evolved during its execution, and what follows are the key project findings. This project has arguably provided the first global view of how cirrus cloud (defined as having cloud base temperature T < 235 K) nucleation physics (evaluated through satellite retrievals of ice particle number concentration Ni, effective diameter De and ice water content IWC) evolves with the seasons for a given temperature, latitude zone and surface type (e.g. ocean vs. land), based on a new satellite remote sensing method developed for this project. The retrieval method is unique in that it is very sensitive to the small ice crystals that govern the number concentration Ni, allowing Ni to be retrieved. The method currently samples single-layer cirrus clouds having visible optical depth ranging from about 0.3 to 3.0, using co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 μm. Retrievals of Ni are primarily used to estimate the cirrus cloud formation mechanism; that is, either homo- or heterogeneous ice nucleation (henceforth hom and het). Thismore » is possible since, in general, hom produces more than an order of magnitude more ice crystals than does het. Thus the retrievals provide insight on how these mechanisms change with the seasons for a given latitude zone or region, based on the years 2008 and 2013. Using a conservative criterion for hom cirrus, on average, the sampled cirrus clouds formed through hom occur about 43% of the time in the Arctic and 50% of the time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37% of the time. Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is lower, and it is lowest in the tropics. Thus, the microphysical properties of cirrus clouds in the Polar Regions are much different than they are in the tropics; something unknown prior to this study. Moreover, the frequency of cirrus cloud occurrence in the Polar Regions varies strongly with season, peaking during winter in the Arctic and during spring in the Antarctic. Considering these seasonal changes in microphysics and inferred cloud coverage, this leads us to speculate that the buildup of Arctic cirrus during winter may significantly contribute to tropospheric heating in that region, possibly affecting winter jet-stream dynamics and mid-latitude weather patterns through the thermal-wind balance relationship. This cirrus cloud research provides essential guidance for realistically representing cirrus clouds in climate models; guidance previously unavailable. For example, mid-latitude hom cirrus were widespread during winter over or nearby mountainous terrain, evidently due to mountain-induced waves that produce strong updrafts at cirrus cloud levels. The treatment of turbulent mountain stress and gravity waves will likely need to be improved in climate models in order to adequately represent cirrus clouds outside the tropics. Another goal of this project was to develop a ground-based 94-GHz radar retrieval for winter snowstorms, based on (1) an improved analytical framework describing the interaction of radiation from radar with snowfall and (2) the development of a steady-state snow growth model that predicts the height-evolution of the ice particle size distribution through ice particle growth by vapor diffusion, aggregation and riming (i.e. the growth of snow through collisions with supercooled cloud droplets). Although activities (1) and (2) were completed, there was insufficient time to test and finalize the radar retrieval scheme. However, activity (2) provided a new method for relating ice particle mass “m” and projected area “A” to the ice particle maximum dimension “D”. The ice cloud microphysical processes (which determine ice cloud radiative properties) in climate models are parameterized in terms of these m-D and A-D relationships. By improving these relationships, the ice cloud radiative properties in Community Atmosphere Model version 5, or CAM5 (an atmosphere global climate model, or GCM) were improved. Student funding from the University of Nevada, Reno, was combined with funds from this project to conduct some basic research on the mechanism of the North American monsoon, or NAM. Federal research on the NAM has dwindled since 2006, but atmospheric soundings taken during research vessel cruises in the Gulf of California (GC) during the North American Monsoon Experiment (NAME) were used to reveal a likely mechanism that explains the relationship between an intrusion of tropical warm water into the GC during late spring-early summer and the onset of relatively heavy NAM rainfall in northwest Mexico and the southwestern United States. These soundings, combined with reanalysis data, satellite sea surface temperatures and satellite measurements of outgoing longwave radiation were used to develop and provide evidence for a planetary-scale NAM mechanism. As far as we know, no other physical explanation has been offered for the spring-summer evolution of the NAM system.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6]
  1. Desert Research Inst. (DRI), Reno, NV (United States)
  2. George Mason Univ., Fairfax, VA (United States)
  3. Science Systems and Applications, Inc., Hampton, VA (United States)
  4. SPEC, Inc., Boulder, CO (United States)
  5. National Center for Atmospheric Research, Boulder, CO (United States)
  6. NASA Langley Research Center, Hampton, VA (United States)
Publication Date:
Research Org.:
Desert Research Inst. (DRI), Reno, NV (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Contributing Org.:
Science Systems and Applications, Inc.; SPEC, Inc., National Center for Atmospheric Research; NASA Langley Research Center, Hampton, Virginia
OSTI Identifier:
1337701
Report Number(s):
DOE-DRI-0008871
DOE Contract Number:  
SC0008871
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; cirrus clouds; remote sensing; mixed phase clouds; ice particle properties; snow growth model; North American monsoon

Citation Formats

Mitchell, David, Erfani, Ehsan, Garnier, Anne, Lawson, Paul, Morrison, Hugh, and Avery, Melody. Final DOE-ASR Report for the Project “Advancing our Understanding and the Remote Sensing of Ice Clouds”. United States: N. p., 2016. Web. doi:10.2172/1337701.
Mitchell, David, Erfani, Ehsan, Garnier, Anne, Lawson, Paul, Morrison, Hugh, & Avery, Melody. Final DOE-ASR Report for the Project “Advancing our Understanding and the Remote Sensing of Ice Clouds”. United States. doi:10.2172/1337701.
Mitchell, David, Erfani, Ehsan, Garnier, Anne, Lawson, Paul, Morrison, Hugh, and Avery, Melody. Thu . "Final DOE-ASR Report for the Project “Advancing our Understanding and the Remote Sensing of Ice Clouds”". United States. doi:10.2172/1337701. https://www.osti.gov/servlets/purl/1337701.
@article{osti_1337701,
title = {Final DOE-ASR Report for the Project “Advancing our Understanding and the Remote Sensing of Ice Clouds”},
author = {Mitchell, David and Erfani, Ehsan and Garnier, Anne and Lawson, Paul and Morrison, Hugh and Avery, Melody},
abstractNote = {This project has evolved during its execution, and what follows are the key project findings. This project has arguably provided the first global view of how cirrus cloud (defined as having cloud base temperature T < 235 K) nucleation physics (evaluated through satellite retrievals of ice particle number concentration Ni, effective diameter De and ice water content IWC) evolves with the seasons for a given temperature, latitude zone and surface type (e.g. ocean vs. land), based on a new satellite remote sensing method developed for this project. The retrieval method is unique in that it is very sensitive to the small ice crystals that govern the number concentration Ni, allowing Ni to be retrieved. The method currently samples single-layer cirrus clouds having visible optical depth ranging from about 0.3 to 3.0, using co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 μm. Retrievals of Ni are primarily used to estimate the cirrus cloud formation mechanism; that is, either homo- or heterogeneous ice nucleation (henceforth hom and het). This is possible since, in general, hom produces more than an order of magnitude more ice crystals than does het. Thus the retrievals provide insight on how these mechanisms change with the seasons for a given latitude zone or region, based on the years 2008 and 2013. Using a conservative criterion for hom cirrus, on average, the sampled cirrus clouds formed through hom occur about 43% of the time in the Arctic and 50% of the time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37% of the time. Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is lower, and it is lowest in the tropics. Thus, the microphysical properties of cirrus clouds in the Polar Regions are much different than they are in the tropics; something unknown prior to this study. Moreover, the frequency of cirrus cloud occurrence in the Polar Regions varies strongly with season, peaking during winter in the Arctic and during spring in the Antarctic. Considering these seasonal changes in microphysics and inferred cloud coverage, this leads us to speculate that the buildup of Arctic cirrus during winter may significantly contribute to tropospheric heating in that region, possibly affecting winter jet-stream dynamics and mid-latitude weather patterns through the thermal-wind balance relationship. This cirrus cloud research provides essential guidance for realistically representing cirrus clouds in climate models; guidance previously unavailable. For example, mid-latitude hom cirrus were widespread during winter over or nearby mountainous terrain, evidently due to mountain-induced waves that produce strong updrafts at cirrus cloud levels. The treatment of turbulent mountain stress and gravity waves will likely need to be improved in climate models in order to adequately represent cirrus clouds outside the tropics. Another goal of this project was to develop a ground-based 94-GHz radar retrieval for winter snowstorms, based on (1) an improved analytical framework describing the interaction of radiation from radar with snowfall and (2) the development of a steady-state snow growth model that predicts the height-evolution of the ice particle size distribution through ice particle growth by vapor diffusion, aggregation and riming (i.e. the growth of snow through collisions with supercooled cloud droplets). Although activities (1) and (2) were completed, there was insufficient time to test and finalize the radar retrieval scheme. However, activity (2) provided a new method for relating ice particle mass “m” and projected area “A” to the ice particle maximum dimension “D”. The ice cloud microphysical processes (which determine ice cloud radiative properties) in climate models are parameterized in terms of these m-D and A-D relationships. By improving these relationships, the ice cloud radiative properties in Community Atmosphere Model version 5, or CAM5 (an atmosphere global climate model, or GCM) were improved. Student funding from the University of Nevada, Reno, was combined with funds from this project to conduct some basic research on the mechanism of the North American monsoon, or NAM. Federal research on the NAM has dwindled since 2006, but atmospheric soundings taken during research vessel cruises in the Gulf of California (GC) during the North American Monsoon Experiment (NAME) were used to reveal a likely mechanism that explains the relationship between an intrusion of tropical warm water into the GC during late spring-early summer and the onset of relatively heavy NAM rainfall in northwest Mexico and the southwestern United States. These soundings, combined with reanalysis data, satellite sea surface temperatures and satellite measurements of outgoing longwave radiation were used to develop and provide evidence for a planetary-scale NAM mechanism. As far as we know, no other physical explanation has been offered for the spring-summer evolution of the NAM system.},
doi = {10.2172/1337701},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {12}
}