skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Distinctive Klf4 mutants determine preference for DNA methylation status

Abstract

Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resulted in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant.more » Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1335980
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nucleic Acids Research; Journal Volume: 44; Journal Issue: (21) ; 12, 2016
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Hashimoto, Hideharu, Wang, Dongxue, Steves, Alyse N., Jin, Peng, Blumenthal, Robert M., Zhang, Xing, and Cheng, Xiaodong. Distinctive Klf4 mutants determine preference for DNA methylation status. United States: N. p., 2016. Web. doi:10.1093/nar/gkw774.
Hashimoto, Hideharu, Wang, Dongxue, Steves, Alyse N., Jin, Peng, Blumenthal, Robert M., Zhang, Xing, & Cheng, Xiaodong. Distinctive Klf4 mutants determine preference for DNA methylation status. United States. doi:10.1093/nar/gkw774.
Hashimoto, Hideharu, Wang, Dongxue, Steves, Alyse N., Jin, Peng, Blumenthal, Robert M., Zhang, Xing, and Cheng, Xiaodong. 2016. "Distinctive Klf4 mutants determine preference for DNA methylation status". United States. doi:10.1093/nar/gkw774.
@article{osti_1335980,
title = {Distinctive Klf4 mutants determine preference for DNA methylation status},
author = {Hashimoto, Hideharu and Wang, Dongxue and Steves, Alyse N. and Jin, Peng and Blumenthal, Robert M. and Zhang, Xing and Cheng, Xiaodong},
abstractNote = {Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resulted in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.},
doi = {10.1093/nar/gkw774},
journal = {Nucleic Acids Research},
number = (21) ; 12, 2016,
volume = 44,
place = {United States},
year = 2016,
month = 9
}
  • Research highlights: {yields} Verifying by direct methylation assay the substrate sites of PRMT1 in the hnRNP K protein. {yields} Identifying the preferred PMRT1 methylation regions in hnRNP K by kinetic analysis. {yields} Linking methylation in regulating nuclear localization of hnRNP K. -- Abstract: Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates,more » here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.« less
  • Fully-protective, long-lasting, immunological (FPLLI) memory against Plasmodium falciparum malaria regarding immune protection-inducing protein structures (IMPIPS) vaccinated into monkeys previously challenged and re-challenged 60 days later with a lethal Aotus monkey-adapted P. falciparum strain was found to be associated with preferential high binding capacity to HLA-DRβ1* allelic molecules of the major histocompatibility class II (MHC-II), rather than HLA-DRβ3*, β4*, β5* alleles. Complete PPII{sub L} 3D structure, a longer distance (26.5 Å ± 1.5 Å) between residues perfectly fitting into HLA-DRβ1*PBR pockets 1 and 9, a gauche{sup −} rotamer orientation in p8 TCR-contacting polar residue and a larger volume of polar p2 residues was also found. Thismore » data, in association with previously-described p3 and p7 apolar residues having gauche{sup +} orientation to form a perfect MHC-II-peptide-TCR complex, determines the stereo-electronic and topochemical characteristics associated with FPLLI immunological memory. - Highlights: • Stereo-electronic and topochemical rules associated with FPLLI immunological memory. • Presence of very high long-lasting antibody titres against Plasmodium falciparum Spz. • Protective memory induction associated with a binding capacity to HLA-DRβ1*. • gauche{sup −} rotamer orientation in p8 polar residue is related to is related to immunological memory.« less
  • Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4more » protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.« less
  • SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine {epsilon}-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine {epsilon}-aminomore » group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated {epsilon}-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes.« less
  • Certain lysine residues on histone tails could be methylated by protein lysine methyltransferases (PKMTs) using S-adenosyl-L-methionine (AdoMet) as the methyl donor. Since the methylation states of the target lysines play a fundamental role in the regulation of chromatin structure and gene expression, it is important to study the property of PKMTs that allows a specific number of methyl groups (one, two or three) to be added (termed as product specificity). It has been shown that the product specificity of PKMTs may be controlled in part by the existence of specific residues at the active site. One of the best examplesmore » is a Phe/Tyr switch found in many PKMTs. Here quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed on wild type G9a-like protein (GLP) and its F1209Y and Y1124F mutants for understanding the energetic origin of the product specificity and the reasons for the change of product specificity as a result of single-residue mutations at the Phe/Tyr switch as well as other positions. The free energy barriers of the methyl transfer processes calculated from our simulations are consistent with experimental data, supporting the suggestion that the relative free energy barriers may determine, at least in part, the product specificity of PKMTs. The changes of the free energy barriers as a result of the mutations are also discussed based on the structural information obtained from the simulations. Furthermore, the results suggest that the space and active-site interactions around the -amino group of the target lysine available for methyl addition appear to among the key structural factors in controlling the product specificity and activity of PKMTs.« less