skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-­211 Isolation

Abstract

This research is a collaborative effort between the research groups of the PIs, Dr. D. Scott Wilbur in the Department of Radiation Oncology at the University of Washington (UW) and Matthew O’Hara at the Pacific Northwest National Laboratory (PNNL). In this report only those studies conducted at UW and the budget information from UW will be reported. A separate progress and financial report will be provided by PNNL. This final report outlines the experiments (Tasks) conducted and results obtained at UW from July 1, 2013 thru June 30, 2016 (2-­year project with 1 year no-­cost extension). The report divides the information on the experiments and results obtained into the 5 specific objectives of the research efforts and the Tasks within those objectives. This format is used so that it is easy to see what has been accomplished in each area. A brief summary of the major findings from the studies is provided below. Summary of Major Findings from Research/Training Activities at UW: Anion and cation exchange columns did not provide adequate 211At capture and/or extraction results under conditions studied to warrant further evaluation; PEG-­Merrifield resins containing mPEG350, mPEG750, mPEG2000 and mPEG5000 were synthesized and evaluated; All of the mPEG resinsmore » with different sized mPEG moieties conjugated gave similar 211At capture (>95%) from 8M HCl solutions and release with conc. NH 4OH (~50-­80%), but very low quantities were released when NaOH was used as an eluent; Capture and release of 211At when loading [ 211At]astatate appeared to be similar to that of [ 211At]astatide on PEG columns, but further studies need to be conducted to confirm that; Capture of 211At on PEG columns was lower (e.g. 80-­90%) from solutions of 8M HNO 3, but higher capture rates (e.g. 99%) can be obtained when 10M HNO 3 is mixed with an equal quantity of 8M HCl; Addition of reductants to the 211At solutions did not appear to change the percent capture, but may have an effect on the % extracted; There was some indication that the PEG-­Merrifield resins could be saturated (perhaps with Bi) resulting in lower capture percentages, but more studies need to be done to confirm that; A target dissolution chamber, designed and built at PNNL, works well with syringe pumps so it can be used in an automated system; Preliminary semi-­automated 211At isolation studies have been conducted with full-scale target dissolution and 211At isolation using a PEG column on the Hamilton automated system gave low overall recoveries, but HNO 3 was used (rather than HCl) for loading the 211At and flow rates were not optimized; Results obtained using PEG columns are high enough to warrant further development on a fully automated system; Results obtained also indicate that additional studies are warranted to evaluate other types of columns for 211At separation from bismuth, which allow use of HNO 3/HCl mixtures for loading and NaOH for eluting 211At. Such a column could greatly simplify the overall isolation process and make it easier to automate.« less

Authors:
 [1]
  1. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1335515
DOE Contract Number:  
SC0010502
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; ASTATINE 211; SOLUTIONS; HYDROCHLORIC ACID; RESINS; NITRIC ACID; SODIUM HYDROXIDES; MATERIALS RECOVERY; AMMONIUM HYDROXIDES; EVALUATION; AUTOMATION; EXTRACTION; BISMUTH; PURIFICATION; FLOW RATE; ION EXCHANGE; BUDGETS; DESIGN; SEPARATION PROCESSES; astatine-211; radiopharmaceuticals

Citation Formats

Wilbur, Daniel Scott. Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-­211 Isolation. United States: N. p., 2016. Web. doi:10.2172/1335515.
Wilbur, Daniel Scott. Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-­211 Isolation. United States. doi:10.2172/1335515.
Wilbur, Daniel Scott. Tue . "Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-­211 Isolation". United States. doi:10.2172/1335515. https://www.osti.gov/servlets/purl/1335515.
@article{osti_1335515,
title = {Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-­211 Isolation},
author = {Wilbur, Daniel Scott},
abstractNote = {This research is a collaborative effort between the research groups of the PIs, Dr. D. Scott Wilbur in the Department of Radiation Oncology at the University of Washington (UW) and Matthew O’Hara at the Pacific Northwest National Laboratory (PNNL). In this report only those studies conducted at UW and the budget information from UW will be reported. A separate progress and financial report will be provided by PNNL. This final report outlines the experiments (Tasks) conducted and results obtained at UW from July 1, 2013 thru June 30, 2016 (2-­year project with 1 year no-­cost extension). The report divides the information on the experiments and results obtained into the 5 specific objectives of the research efforts and the Tasks within those objectives. This format is used so that it is easy to see what has been accomplished in each area. A brief summary of the major findings from the studies is provided below. Summary of Major Findings from Research/Training Activities at UW: Anion and cation exchange columns did not provide adequate 211At capture and/or extraction results under conditions studied to warrant further evaluation; PEG-­Merrifield resins containing mPEG350, mPEG750, mPEG2000 and mPEG5000 were synthesized and evaluated; All of the mPEG resins with different sized mPEG moieties conjugated gave similar 211At capture (>95%) from 8M HCl solutions and release with conc. NH4OH (~50-­80%), but very low quantities were released when NaOH was used as an eluent; Capture and release of 211At when loading [211At]astatate appeared to be similar to that of [211At]astatide on PEG columns, but further studies need to be conducted to confirm that; Capture of 211At on PEG columns was lower (e.g. 80-­90%) from solutions of 8M HNO3, but higher capture rates (e.g. 99%) can be obtained when 10M HNO3 is mixed with an equal quantity of 8M HCl; Addition of reductants to the 211At solutions did not appear to change the percent capture, but may have an effect on the % extracted; There was some indication that the PEG-­Merrifield resins could be saturated (perhaps with Bi) resulting in lower capture percentages, but more studies need to be done to confirm that; A target dissolution chamber, designed and built at PNNL, works well with syringe pumps so it can be used in an automated system; Preliminary semi-­automated 211At isolation studies have been conducted with full-scale target dissolution and 211At isolation using a PEG column on the Hamilton automated system gave low overall recoveries, but HNO3 was used (rather than HCl) for loading the 211At and flow rates were not optimized; Results obtained using PEG columns are high enough to warrant further development on a fully automated system; Results obtained also indicate that additional studies are warranted to evaluate other types of columns for 211At separation from bismuth, which allow use of HNO3/HCl mixtures for loading and NaOH for eluting 211At. Such a column could greatly simplify the overall isolation process and make it easier to automate.},
doi = {10.2172/1335515},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 19 00:00:00 EDT 2016},
month = {Tue Jul 19 00:00:00 EDT 2016}
}

Technical Report:

Save / Share: