skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting

Abstract

Non-chromaffin paragangliomas are autosomal dominantly inherited tumors of the head and neck region (frequency: 1:30,000). Genomic imprinting influences the expression of the disorder. Tumor development is restricted to offspring of male disease gene carriers. By linkage analysis and haplotyping of a single family, in which the pattern of inheritance is consistent with genomic imprinting, we have mapped the gene to a 5 cM region of chromosome 11q13.1 between D11S956 and PYGM. A maximum lod score of 7.62 at {theta}=0.0 was obtained for D11S480. This interval does not overlap with the segment 11q22.3-q23.3, to which a locus for glomus tumors has been assigned in other families. Moreover, the 5cM interval was excluded as the location of the disease gene in a second family showing the imprinting phenomenon, whereas an indication for linkage was obtained (Z=+2.65) with markers from the distal locus. These observations argue for the presence of two distinct imprinted genes for paragangliomas on 11q. Clinical findings suggest that at least one, but probably both genes code for tumor suppressor required for tumor initiation. According to this model, imprinting would account for the silencing of the two maternal copies, whereas a paternal copy would be inactive due to an inheritedmore » mutation. Tumors would then result from somatic inactivation of the other paternal gene copy in individual cells. In tumors, relaxation of imprinting seems to be a frequent feature. Here, it would necessitate subsequent inactivation of maternal gene copies to allow tumor progression. Indeed, selective loss of maternal alleles in paragangliomas has been observed with markers from 11 q. Definite proof for this model should come from the isolation and expression studies of the involved genes.« less

Authors:
; ;  [1]
  1. University Hospital Nijmegen (Netherlands) [and others
Publication Date:
OSTI Identifier:
133538
Report Number(s):
CONF-941009-
Journal ID: AJHGAG; ISSN 0002-9297; TRN: 95:005313-0266
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Human Genetics; Journal Volume: 55; Journal Issue: Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; GENES; GENE MUTATIONS; HUMAN CHROMOSOMES; GENETIC MAPPING; CHROMOSOMAL ABERRATIONS; HEAD; NEOPLASMS; NECK; PATHOGENESIS; BIOLOGICAL MODELS; DOMINANT MUTATIONS; GENETICS; STATISTICS; BIOLOGICAL MARKERS; SOMATIC MUTATIONS

Citation Formats

Mariman, E.C.M., Beersum, S.E.C. van, and Ropers, H.H. A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting. United States: N. p., 1994. Web.
Mariman, E.C.M., Beersum, S.E.C. van, & Ropers, H.H. A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting. United States.
Mariman, E.C.M., Beersum, S.E.C. van, and Ropers, H.H. 1994. "A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting". United States. doi:.
@article{osti_133538,
title = {A model for the initiation and progression of non-chromaffin paragangliomas: An autosomal dominant disorder with genetic heterogeneity and genomic imprinting},
author = {Mariman, E.C.M. and Beersum, S.E.C. van and Ropers, H.H.},
abstractNote = {Non-chromaffin paragangliomas are autosomal dominantly inherited tumors of the head and neck region (frequency: 1:30,000). Genomic imprinting influences the expression of the disorder. Tumor development is restricted to offspring of male disease gene carriers. By linkage analysis and haplotyping of a single family, in which the pattern of inheritance is consistent with genomic imprinting, we have mapped the gene to a 5 cM region of chromosome 11q13.1 between D11S956 and PYGM. A maximum lod score of 7.62 at {theta}=0.0 was obtained for D11S480. This interval does not overlap with the segment 11q22.3-q23.3, to which a locus for glomus tumors has been assigned in other families. Moreover, the 5cM interval was excluded as the location of the disease gene in a second family showing the imprinting phenomenon, whereas an indication for linkage was obtained (Z=+2.65) with markers from the distal locus. These observations argue for the presence of two distinct imprinted genes for paragangliomas on 11q. Clinical findings suggest that at least one, but probably both genes code for tumor suppressor required for tumor initiation. According to this model, imprinting would account for the silencing of the two maternal copies, whereas a paternal copy would be inactive due to an inherited mutation. Tumors would then result from somatic inactivation of the other paternal gene copy in individual cells. In tumors, relaxation of imprinting seems to be a frequent feature. Here, it would necessitate subsequent inactivation of maternal gene copies to allow tumor progression. Indeed, selective loss of maternal alleles in paragangliomas has been observed with markers from 11 q. Definite proof for this model should come from the isolation and expression studies of the involved genes.},
doi = {},
journal = {American Journal of Human Genetics},
number = Suppl.3,
volume = 55,
place = {United States},
year = 1994,
month = 9
}
  • Since the initial report of linkage of autosomal dominant retinitis pigmentosa (adRP) to the long arm of chromosome 3, several mutations in the gene encoding rhodopsin, which also maps to 3q, have been reported in adRP pedigrees. However, there has been some discussion as to the possibility of a second adRP locus on 3q. This suggestion has important diagnostic and research implications and must raise doubts about the usefulness of linked markers for reliable diagnosis of RP patients. In order to address this issue the authors have performed an admixture test (A-test) on 10 D3S47-linked adRP pedigrees and have foundmore » a likelihood ratio of heterogeneity versus homogeneity of 4.90. They performed a second A-test, combining the data from all families with known rhodopsin mutations. In this test they obtained a reduced likelihood ratio of heterogeneity versus homogeneity, of 1.0. On the basis of these statistical analyses they have found no significant support for two adRP loci on chromosome 3q. Furthermore, using 40 CEPH families, they have localized the rhodopsin gene to the D3S47-D3S20 interval, with a maximum lod score (Z[sub m]) of 20 and have found that the order qter-D3S47-rhodopsin-D3S20-cen is significantly more likely than any other order. In addition, they have mapped (Z[sub m] = 30) the microsatellite marker D3S621 relative to other loci in this region of the genome. 27 refs., 3 figs., 3 tabs.« less
  • We have investigated the possible involvement of further genetic heterogeneity in autosomal dominant retinitis pigmentosa using a previously unreported large Irish family with the disease. We have utilized polymorphic microsatellite markers to exclude the disease gene segregating in this family from 3q, 6p, and the pericentric region of 8, that is, each of the three chromosomal regions to which adRP loci are known to map. Hence, we provide definitive evidence for the involvement of a fourth locus in autosomal dominant retinitis pigmentosa. 25 refs., 2 figs.
  • The split hand/split foot anomaly (SHSF) is a developmental defect of the distal limbs, specifically involving the central digital rays. Such a defect is usually inherited as an autosomal trait, although most cases occur sporadically. Penetrance of SHSF is extremely variable, ranging from apparent excess of affected offspring in some families to very low penetrance in others. One explanation for this variability is that of locus heterogeneity. More recently, we ascertained a family with normal chromosomes and a highly penetrant type of SHSF, segregating as an autosomal dominant trait, and investigated whether it could also be due to the putativemore » limb-development mutant gene at the 7q locus. For this purpose, we studied linkage between the defect and highly polymorphic DNA markers from the 7q22 region. The results demonstrate that, in the highly penetrant family, autosomal dominant SHSF is caused by a mutant gene not linked with the putative locus in 7q22.1. Our data is in agreement with the findings of other groups and provide further evidence for genetic heterogeneity of autosomal dominant SHSF. 12 refs., 2 figs., 1 tab.« less
  • Glaucoma is a term used to describe a group of disorders which have in common a characteristic degeneration of the optic nerve associated with typical visual field defects and usually associated with elevated intraocular pressure. Two percent of white Americans and 6-10% of black Americans are affected by the disease. Compelling data indicate that susceptibility to many types of glaucoma is inherited. Hereditary juvenile glaucoma is one form of glaucoma that develops in children and is inherited as an autosomal dominant trait with high penetrance. Using a single large Caucasian pedigree affected with autosomal dominant juvenile glaucoma, Sheffield discovered positivemore » linkage to a group of markers that map to a 30 cM region on the long arm of chromosome 1 (1q21-q31). We have subsequently identified three unrelated Caucasian pedigrees affected with autosomal dominant juvenile glaucoma that also demonstrate linkage to this region on chromosome 1, with the highest combined lod score of 5.12 at theta = .05 for marker D1S218. The identification of critical recombinant individuals in our three pedigrees has allowed us to further localize the disease gene to a 12 cM region between markers D1S242 and D1S431. In addition, we have identified several pedigrees which do not demonstrate linkage to chromosome 1q, including a black family affected with autosomal dominant juvenile glaucoma that is indistinguishable clinically from the disorder affecting the caucasian pedigrees and three pedigrees affected with pigmentary dispersion syndrome, a form of glaucoma that also affects the juvenile population and is also inherited as an autosomal dominant trait. These findings provide evidence for genetic heterogeneity in juvenile glaucoma.« less
  • We report a genetic study of 14 Spanish kindreds and 11 isolated cases with SCA. The diagnosis was ascertained in 60 members, but clinical data were only obtained for 35 of them. One defective gene responsible for the disease was localized to 6p22-p23 (SCA1) and the mutation consists of an expansion of an intragenic (CAG){sub n} repeat (REP). We studied all of our genealogical and isolated affected individuals in order to know their 6p mutational status. Thus we detected a large pedigree which has the pathological expansion with {open_quotes}n{close_quotes} in the range of 41 to 57 repeats. The expansion increasesmore » through generations and correlates with anticipation. In the Spanish population, the non-pathological range of {open_quotes}n{close_quotes} is from 6 to 39 repeats. These sequences are {open_quotes}protected{close_quotes} having an interrupted repeat configuration, studied by restriction and sequencing analysis. This mutation was not present in the genealogical or isolated affected individuals studied. We also tested our families with the recently reported CAG expansion in 12p-12ter (DRPLA) and obtained negative results. Linkage analysis in non-SCA1, DRPLA families using markers from others chromosomal regions, 12q23-24.1 (SCA2) and 14q24.3-q32 (SCA3), results in negative lod scores and shows genetic heterogeneity in our population.« less