skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Falling Particles: Concept Definition and Capital Cost Estimate

Abstract

The Department of Energy’s (DOE) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles.

Authors:
 [1];  [1];  [1];  [1]
  1. Black & Veatch, Kansas City, MO (United States)
Publication Date:
Research Org.:
Allegheny Science & Technology Corporation, Bridgeport, WV (United States); Black & Veatch, Kansas City, MO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1335155
Report Number(s):
DOE-B&V-6650-3
DE-BP0004927
DOE Contract Number:
EE0006650
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; Falling Particle; Receiver; Supercritical CO2; sCO2

Citation Formats

Stoddard, Larry, Galluzzo, Geoff, Adams, Shannon, and Andrew, Daniel. Falling Particles: Concept Definition and Capital Cost Estimate. United States: N. p., 2016. Web. doi:10.2172/1335155.
Stoddard, Larry, Galluzzo, Geoff, Adams, Shannon, & Andrew, Daniel. Falling Particles: Concept Definition and Capital Cost Estimate. United States. doi:10.2172/1335155.
Stoddard, Larry, Galluzzo, Geoff, Adams, Shannon, and Andrew, Daniel. Thu . "Falling Particles: Concept Definition and Capital Cost Estimate". United States. doi:10.2172/1335155. https://www.osti.gov/servlets/purl/1335155.
@article{osti_1335155,
title = {Falling Particles: Concept Definition and Capital Cost Estimate},
author = {Stoddard, Larry and Galluzzo, Geoff and Adams, Shannon and Andrew, Daniel},
abstractNote = {The Department of Energy’s (DOE) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles.},
doi = {10.2172/1335155},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 30 00:00:00 EDT 2016},
month = {Thu Jun 30 00:00:00 EDT 2016}
}

Technical Report:

Save / Share:
  • The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO hasmore » a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and 30 percent further reductions by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. This report addresses the concept definition of the sCO2 power generation system, a sub-set of items 2 and 3 above. Other reports address the balance of items 1 to 3 above as well as the MS/sCO2 integrated 10MWe facility, Item 2.« less
  • The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO hasmore » a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. This report addresses the concept definition of the MS/sCO2 integrated 10MWe facility, Item No. 2 above. Other reports address Items No. 1 and No. 3 above.« less
  • The Department of Energy (DOE) issued an RFP for a "System Design Study to Reduce Capital and Operating Cost and Bench Scale Testing of a Circulating-Bed AFB Advanced Concept." The design and cost study of a 150,000 pounds per hour steam boiler comprised Phase-I of the RFP. The objective was to produce a design with improved performance and reduced capital and operating costs compared with conventional atmospheric pressure fluidized bed (AFB) boilers. The final result was a significant reduction of capital cost - 36% below the lowest AFB plant cost. The steam cost was 24% below the corresponding cost formore » the AFB process. In June 1985, DOE issued a Change Order (C001) to the Phase-I study in order for MWK to design and estimate the cost for a scaled-down coal-fired (Illinois No. 6, 3% S) CFBC plant producing low pressure and low temperature steam (75,000lbs/hr, 200 psig, 387{degree}F), and to compare the costs -capital and steam costs -with those for a packaged high sulfur (3%) fuel oil-fired boiler, which is of the same capacity and requires SO{sub 2} removal. An additional objective was to estimate the cost for a No. 2 fuel oil-fired boiler that does not need any SO{sub 2} scrubber. An evaluation of the sensitivity of the steam cost to the oil-fired boiler capital cost and to fuel prices was also to be undertaken. The cost of steam produced by the No. 6 fuel oil boiler is 52% higher than the cost for CFBC, and the corresponding cost for the No. 2 fuel oil plant is 43% higher. Again, a large advantage for the CFBC comes from the low price of coal relative to that of oil. The large cost advantage of steam calculated for the MWK CFBC using coal as a fuel over the oil-fired boilers would remain even in the worst case scenario of a declining oil price accompanied by a steady coal price. 7 refs., 25 figs., 34 tabs.« less