skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226

Abstract

We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after the GW detection. We achieve $$5\sigma $$ point-source limiting magnitudes of $$i\approx 21.7$$ and $$z\approx 21.5$$, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with $$\gtrsim 3\sigma $$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of $$i-z\approx 0.3$$ mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.

Authors:
 [1]
  1. et al.
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1334303
Report Number(s):
FERMILAB-PUB-16-218-AE-PPD; arXiv:1606.04538
Journal ID: ISSN 2041-8213; 1469400
Grant/Contract Number:
AC02-07CH11359; AC02-SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal. Letters
Additional Journal Information:
Journal Volume: 826; Journal Issue: 2; Journal ID: ISSN 2041-8213
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; binaries: close; catalogs; gravitational waves; stars: neutron; surveys

Citation Formats

Cowperthwaite, P. S. A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226. United States: N. p., 2016. Web. doi:10.3847/2041-8205/826/2/L29.
Cowperthwaite, P. S. A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226. United States. doi:10.3847/2041-8205/826/2/L29.
Cowperthwaite, P. S. 2016. "A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226". United States. doi:10.3847/2041-8205/826/2/L29. https://www.osti.gov/servlets/purl/1334303.
@article{osti_1334303,
title = {A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226},
author = {Cowperthwaite, P. S.},
abstractNote = {We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after the GW detection. We achieve $5\sigma $ point-source limiting magnitudes of $i\approx 21.7$ and $z\approx 21.5$, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with $\gtrsim 3\sigma $ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of $i-z\approx 0.3$ mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.},
doi = {10.3847/2041-8205/826/2/L29},
journal = {The Astrophysical Journal. Letters},
number = 2,
volume = 826,
place = {United States},
year = 2016,
month = 7
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7works
Citation information provided by
Web of Science

Save / Share:
  • We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after the GW detection. We achievemore » $$5\sigma $$ point-source limiting magnitudes of $$i\approx 21.7$$ and $$z\approx 21.5$$, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with $$\gtrsim 3\sigma $$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of $$i-z\approx 0.3$$ mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.« less
  • We present a search for an electromagnetic counterpart of the gravitational-wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i {sub P1} filter, starting 11.5 hr after the LIGO information release and lasting for an additional 28 days. The first observations started 49.5 hr after the time of the GW151226 detection. We typically reached sensitivity limits of i {sub P1} = 20.3–20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m ≃ 19. We found 49more » extragalactic transients (that are not obviously active galactic nuclei), including a faint transient in a galaxy at 7 Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226, that evolved into a type Ibn supernova. The redshift of the transient is secure at z = 0.1747 ± 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS–NS mergers producing kilonovae at D{sub L} ≲ 100 Mpc, which is promising for future LIGO/Virgo searches.« less
  • We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 degmore » $^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $$5\sigma$$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$$^{2}$$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.« less
  • We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg 2 area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4–5, 7, and 24 days after the trigger. The median 5σ point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the imagesmore » through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg 2, corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4–5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i – z) = 1, 0, –1, respectively. Lastly, our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.« less