skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Volatile particles measured by vapor-particle separator

Abstract

Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel engines for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particlesmore » smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less

Authors:
 [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Air Force Research Lab., Wright-Patterson, OH (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
Work for Others (WFO); USDOE
OSTI Identifier:
1333074
Grant/Contract Number:
AC05-00OR22725; 2340-V672-13
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Aerosol Science
Additional Journal Information:
Journal Volume: 101; Journal Issue: C; Journal ID: ISSN 0021-8502
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 42 ENGINEERING; volatile particles; engine emissions; vapor-particle separator; F117 engine; T63 engine

Citation Formats

Cheng, Meng -Dawn, and Corporan, Edwin. Volatile particles measured by vapor-particle separator. United States: N. p., 2016. Web. doi:10.1016/j.jaerosci.2016.08.009.
Cheng, Meng -Dawn, & Corporan, Edwin. Volatile particles measured by vapor-particle separator. United States. doi:10.1016/j.jaerosci.2016.08.009.
Cheng, Meng -Dawn, and Corporan, Edwin. 2016. "Volatile particles measured by vapor-particle separator". United States. doi:10.1016/j.jaerosci.2016.08.009. https://www.osti.gov/servlets/purl/1333074.
@article{osti_1333074,
title = {Volatile particles measured by vapor-particle separator},
author = {Cheng, Meng -Dawn and Corporan, Edwin},
abstractNote = {Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel engines for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.},
doi = {10.1016/j.jaerosci.2016.08.009},
journal = {Journal of Aerosol Science},
number = C,
volume = 101,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • We implemented a new concept for heavy element chemistry research using an ion separator to separate the desired products from the beam, transfer products and other undesirable by-products prior to chemical studies. First, a Recoil product Transfer Chamber (RTC) was designed and attached to the Berkeley Gas-filled Separator (BGS) to collect and transfer the recoiling products to the chemical separation system. The RTC consists of a wire-grid-supported thin mylar foil ({le}) 200 {micro}g/cm{sup 2} that separates the BGS detector chamber, at 1.3 mbar pressure, from the chemistry system at different pressures ranging from 480 mbar to 2000 mbar. The overallmore » transport efficiency ranged between 30% and 15%, compared to the activity measured in the focal plane detector of the BGS. The CTS was designed as a separation and {alpha}-decay detection system for the highly volatile tetroxides of osmium and hassium, element 108. The CTS, shown in figure 1, consists of two rows of 32-{alpha} detectors arranged along a negative temperature gradient. The tetroxides adsorb on the surface of one of the silicone photodiodes at a certain deposition temperature, and the nuclide is then identified by the {alpha}-decay. To test the CTS with the expected hassium homologue osmium, different {alpha}-active osmium isotopes were produced using the nuclear reactions {sup 118}Sn({sup 56}Fe, 4,5n) {sup 170,169}Os and {sup 120}Sn({sup 56}Fe, 4,5n) {sup 172,171}Os. After preseparation in the BGS, a mixture of 90% helium and 10% oxygen was used to transport the osmium to a quartz tube heated to 1225 K, where OsO{sub 4} was formed. The negative temperature gradient in the CTS ranged from 248 K to 173 K. Using a flow rate of 500 mL/min, most of the osmium activity was adsorbed at a temperature of about 203 K. From the measured {alpha}-activity distribution, an adsorption enthalpy of 40 {+-} 1 kJ/mol for OsO{sub 4} on the detector surface was calculated using Monte Carlo simulations. The results show that the CTS is working properly and can be used for experiments studying the chemical properties of hassium.« less
  • The high percentage of ferromagnetic particles/..gamma.. - Fe/sub 2/O/sub 3// in chimney dust of coal power stations and a significant industrial demand for these materials suggests the possibility of extracting them on a large scale. Currently applied magnetic separators are too small for the requirements. A magnetic separator is presented which assures high capacity of dust flow and good quality of a separated ferromagnetic concentrate. The structure of this new magnetic separator and test results are described.
  • Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jetmore » of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.« less