skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber

Abstract

Lignin-derived thermoplastics and elastomers with both versatile performance and commercialization potential have been an elusive pursuit for the past several decades. Lignin content has been limited to about 30 wt %, often requiring chemical modification, solvent fractionation of lignin, or prohibitively expensive additives. Each of these factors is a deterrent to industrial adoption of lignin-based polymers, limiting the potential of this renewable resource. Herein we describe high-performance multiphase thermoplastics made with a blend of 41 wt % unmodified industrial lignin and low-cost additives in a matrix of general-purpose acrylonitrile-butadiene rubber (NBR). Hardwood soda lignin (HSL) and softwood kraft lignin (SKL) were blended under high shear conditions with NBR, carbon black (CB), polyethylene oxide (PEO), boric acid (BA), and dicumyl peroxide (DCP). This combination with SKL lignin in the proper proportions resulted in a thermoplastic with a tensile strength and failure strain of 25.2 MPa and 9 %, respectively; it exhibited an unexpected tensile yield, similar to that of ABS, a commodity thermoplastic. The analogous HSL lignin compositions are tough materials with tensile strengths of 7.3 16.7 MPa and failure strain of 80 140 %. The contrasting ductility and yield stress behavior were analyzed based on the compositions morphology and interfacialmore » structure arising from the nature of each lignin studied. Lastly, the roles of CB as a reinforcement in the rubbery phase, DCP and BA as cross-linkers to create multiphase networks, and PEO to promote the adhesion and compatibility of lignin in commercial-grade NBR are also discussed in detail.« less

Authors:
 [1];  [2];  [3];  [2];  [3];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); The Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. North Carolina State Univ., Raleigh, NC (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
Work for Others (WFO); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1330526
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Green Chemistry
Additional Journal Information:
Journal Volume: 18; Journal Issue: 20; Journal ID: ISSN 1463-9262
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Bova, Tony, Tran, Chau D., Balakshin, Mikhail Y., Chen, Jihua, Capanema, Ewellyn A., and Naskar, Amit K.. An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber. United States: N. p., 2016. Web. doi:10.1039/C6GC01067A.
Bova, Tony, Tran, Chau D., Balakshin, Mikhail Y., Chen, Jihua, Capanema, Ewellyn A., & Naskar, Amit K.. An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber. United States. doi:10.1039/C6GC01067A.
Bova, Tony, Tran, Chau D., Balakshin, Mikhail Y., Chen, Jihua, Capanema, Ewellyn A., and Naskar, Amit K.. Mon . "An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber". United States. doi:10.1039/C6GC01067A. https://www.osti.gov/servlets/purl/1330526.
@article{osti_1330526,
title = {An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber},
author = {Bova, Tony and Tran, Chau D. and Balakshin, Mikhail Y. and Chen, Jihua and Capanema, Ewellyn A. and Naskar, Amit K.},
abstractNote = {Lignin-derived thermoplastics and elastomers with both versatile performance and commercialization potential have been an elusive pursuit for the past several decades. Lignin content has been limited to about 30 wt %, often requiring chemical modification, solvent fractionation of lignin, or prohibitively expensive additives. Each of these factors is a deterrent to industrial adoption of lignin-based polymers, limiting the potential of this renewable resource. Herein we describe high-performance multiphase thermoplastics made with a blend of 41 wt % unmodified industrial lignin and low-cost additives in a matrix of general-purpose acrylonitrile-butadiene rubber (NBR). Hardwood soda lignin (HSL) and softwood kraft lignin (SKL) were blended under high shear conditions with NBR, carbon black (CB), polyethylene oxide (PEO), boric acid (BA), and dicumyl peroxide (DCP). This combination with SKL lignin in the proper proportions resulted in a thermoplastic with a tensile strength and failure strain of 25.2 MPa and 9 %, respectively; it exhibited an unexpected tensile yield, similar to that of ABS, a commodity thermoplastic. The analogous HSL lignin compositions are tough materials with tensile strengths of 7.3 16.7 MPa and failure strain of 80 140 %. The contrasting ductility and yield stress behavior were analyzed based on the compositions morphology and interfacial structure arising from the nature of each lignin studied. Lastly, the roles of CB as a reinforcement in the rubbery phase, DCP and BA as cross-linkers to create multiphase networks, and PEO to promote the adhesion and compatibility of lignin in commercial-grade NBR are also discussed in detail.},
doi = {10.1039/C6GC01067A},
journal = {Green Chemistry},
number = 20,
volume = 18,
place = {United States},
year = {Mon Aug 08 00:00:00 EDT 2016},
month = {Mon Aug 08 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • In this study, a new class of thermoplastic elastomers has been created by introducing nanoscale-dispersed lignin (a biomass-derived phenolic oligomer) into nitrile rubber. Temperature-induced controlled miscibility between the lignin and the rubber during high shear melt-phase synthesis allows tuning the material s morphology and performance. The sustainable product has unprecedented yield stress (15–45 MPa), strain hardens at large deformation, and has outstanding recyclability. The multiphase polymers developed from an equal-mass mixture of a melt-stable lignin fraction and nitrile rubber with optimal acrylonitrile content, using the method described here, show 5–100 nm lignin lamellae with a high-modulus rubbery interphase. Molded ormore » printed elastomeric products prepared from the lignin-nitrile material offer an additional revenue stream to pulping mills and biorefineries. Research was sponsored by the Technology Innovation Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. TEM (J.C. and C.D.T.) and SAXS (J.K.K.) experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.« less
  • Implantation of N{sup +} ion beams are performed on to a non-conjugated elastomer, acrylonirtle butadiene rubber (NBR) with energy 60 keV in the fluence range of 10{sup 14} to 10{sup 16} ions/cm{sup 2}. A decrease in the resistivity of the sample by about eight orders of magnitude is observed in the implanted samples along with color changes. The ion exposed specimens were characterized by means of UV/Vis spectroscopy which shows a shift in the absorption edge value for the as deposited polymer towards higher wavelengths. The band gap is evaluated from the absorption spectra and is found to decrease withmore » increasing fluence. This study can possibly throw light on ion induced changes in the polymer surface.« less
  • Here, a series of poly(1,9-nonamethylene adipamide-co-1,9-nonamethylene terephthalamide) copolymers were produced using melt polymerization and the thermal properties, crystal structure, and moisture uptake characterized. The results confirmed that the copolymers exhibit isomorphism. As expected, glass transition temperature and the apparent melting temperature increased with increasing terephthalmide content. Using the difference in the apparent melting temperature to the crystallization temperature as a measure of relative crystallization rate, it was observed that crystallization rate decreased as the terephthalamide content of the copolymer was increased from 0 to 50 mole percent but then sharply increased when increased beyond 50 mole percent. This behavior maymore » be the result of extensive inter- and intramolecular interactions in the melt associated with terephthalmide units in the polymer chain that nucleate crystallization upon cooling below the equilibrium melting temperature. Comparing the thermal properties of copolymers possessing an excess of terephthalmide units to the commodity polyamide Nylon 6,6, it is believed that these copolymers may have utility as partially renewable engineering thermoplastics.« less
  • Lignin is a major resources for the production of next generation renewable aromatics. Sphingobium sp. SYK-6 is a bacterium that has been well-studied for the breakdown of lignin-derived compounds. There has been a lot of interest in SYK-6 lignolytic activity and many recent works have focused on understanding the unique catabolic pathway it possesses for the degradation of lignin derived monomers and oligomers. Furthermore, there has been no prior effort in understanding the central fluxome based on lignin derived substrates into value-added chemicals.