# Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

## Abstract

In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponentialmore »

- Authors:

- Karlsruhe Inst. of Technology (KIT) (Germany). Inst. of Physical Chemistry
- National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center
- Univ. Paris-Sud, Orsay (France). Laboratoire de Chimie-Physique; Univ. Paris-Saclay, Orsay (France); Centre National de la Recherche Scientifique (CNRS), Orsay (France)
- Univ. College London (United Kingdom). Dept. of Physics and Astronomy

- Publication Date:

- Research Org.:
- National Renewable Energy Lab. (NREL), Golden, CO (United States)

- Sponsoring Org.:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE); Alexander von Humboldt foundation

- OSTI Identifier:
- 1329526

- Report Number(s):
- NREL/JA-2700-67308

Journal ID: ISSN 1549-9618

- Grant/Contract Number:
- AC36-08GO28308; EP/L000202

- Resource Type:
- Journal Article: Accepted Manuscript

- Journal Name:
- Journal of Chemical Theory and Computation

- Additional Journal Information:
- Journal Volume: 12; Journal Issue: 10; Journal ID: ISSN 1549-9618

- Publisher:
- American Chemical Society

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; charge transfer integrals; electron transfer; density functional theory

### Citation Formats

```
Gillet, Natacha, Berstis, Laura, Wu, Xiaojing, Gajdos, Fruzsina, Heck, Alexander, de la Lande, Aurélien, Blumberger, Jochen, and Elstner, Marcus.
```*Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level*. United States: N. p., 2016.
Web. doi:10.1021/acs.jctc.6b00564.

```
Gillet, Natacha, Berstis, Laura, Wu, Xiaojing, Gajdos, Fruzsina, Heck, Alexander, de la Lande, Aurélien, Blumberger, Jochen, & Elstner, Marcus.
```*Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level*. United States. doi:10.1021/acs.jctc.6b00564.

```
Gillet, Natacha, Berstis, Laura, Wu, Xiaojing, Gajdos, Fruzsina, Heck, Alexander, de la Lande, Aurélien, Blumberger, Jochen, and Elstner, Marcus. Fri .
"Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level". United States.
doi:10.1021/acs.jctc.6b00564. https://www.osti.gov/servlets/purl/1329526.
```

```
@article{osti_1329526,
```

title = {Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level},

author = {Gillet, Natacha and Berstis, Laura and Wu, Xiaojing and Gajdos, Fruzsina and Heck, Alexander and de la Lande, Aurélien and Blumberger, Jochen and Elstner, Marcus},

abstractNote = {In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.},

doi = {10.1021/acs.jctc.6b00564},

journal = {Journal of Chemical Theory and Computation},

number = 10,

volume = 12,

place = {United States},

year = {Fri Sep 09 00:00:00 EDT 2016},

month = {Fri Sep 09 00:00:00 EDT 2016}

}

*Citation information provided by*

Web of Science

Web of Science