skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)

Abstract

Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding  ∼  100 µg m −3 of pure H 2SO 4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical ( k OH) was estimated as 4.0 ± 2.0  ×  10 −13 cm 3 molec −1 s −1, which is equivalent to more than a 2-week lifetime. A similar k OH was found for measurements of OH oxidation ofmore » ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (>  1  ×  10 12 molec cm −3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients ( γ OH =  0.59 ± 0.33 in SE US and γ OH =  0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of k OH and γ OH was observed, consistent with surface-area-limited OH uptake. No decrease of k OH was observed as OH concentrations increased. These observations of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; « less
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1328474
Grant/Contract Number:
SC0011105
Resource Type:
Journal Article: Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 16; Journal Issue: 18; Related Information: CHORUS Timestamp: 2016-09-19 04:28:23; Journal ID: ISSN 1680-7324
Publisher:
Copernicus GmbH
Country of Publication:
Germany
Language:
English

Citation Formats

Hu, Weiwei, Palm, Brett B., Day, Douglas A., Campuzano-Jost, Pedro, Krechmer, Jordan E., Peng, Zhe, de Sá, Suzane S., Martin, Scot T., Alexander, M. Lizabeth, Baumann, Karsten, Hacker, Lina, Kiendler-Scharr, Astrid, Koss, Abigail R., de Gouw, Joost A., Goldstein, Allen H., Seco, Roger, Sjostedt, Steven J., Park, Jeong-Hoo, Guenther, Alex B., Kim, Saewung, Canonaco, Francesco, Prévôt, André S. H., Brune, William H., and Jimenez, Jose L.. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Germany: N. p., 2016. Web. doi:10.5194/acp-16-11563-2016.
Hu, Weiwei, Palm, Brett B., Day, Douglas A., Campuzano-Jost, Pedro, Krechmer, Jordan E., Peng, Zhe, de Sá, Suzane S., Martin, Scot T., Alexander, M. Lizabeth, Baumann, Karsten, Hacker, Lina, Kiendler-Scharr, Astrid, Koss, Abigail R., de Gouw, Joost A., Goldstein, Allen H., Seco, Roger, Sjostedt, Steven J., Park, Jeong-Hoo, Guenther, Alex B., Kim, Saewung, Canonaco, Francesco, Prévôt, André S. H., Brune, William H., & Jimenez, Jose L.. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Germany. doi:10.5194/acp-16-11563-2016.
Hu, Weiwei, Palm, Brett B., Day, Douglas A., Campuzano-Jost, Pedro, Krechmer, Jordan E., Peng, Zhe, de Sá, Suzane S., Martin, Scot T., Alexander, M. Lizabeth, Baumann, Karsten, Hacker, Lina, Kiendler-Scharr, Astrid, Koss, Abigail R., de Gouw, Joost A., Goldstein, Allen H., Seco, Roger, Sjostedt, Steven J., Park, Jeong-Hoo, Guenther, Alex B., Kim, Saewung, Canonaco, Francesco, Prévôt, André S. H., Brune, William H., and Jimenez, Jose L.. 2016. "Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)". Germany. doi:10.5194/acp-16-11563-2016.
@article{osti_1328474,
title = {Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)},
author = {Hu, Weiwei and Palm, Brett B. and Day, Douglas A. and Campuzano-Jost, Pedro and Krechmer, Jordan E. and Peng, Zhe and de Sá, Suzane S. and Martin, Scot T. and Alexander, M. Lizabeth and Baumann, Karsten and Hacker, Lina and Kiendler-Scharr, Astrid and Koss, Abigail R. and de Gouw, Joost A. and Goldstein, Allen H. and Seco, Roger and Sjostedt, Steven J. and Park, Jeong-Hoo and Guenther, Alex B. and Kim, Saewung and Canonaco, Francesco and Prévôt, André S. H. and Brune, William H. and Jimenez, Jose L.},
abstractNote = {Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding  ∼  100 µg m−3 of pure H2SO4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0  ×  10−13 cm3 molec−1 s−1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (>  1  ×  1012 molec cm−3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients (γOH =  0.59 ± 0.33 in SE US and γOH =  0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface-area-limited OH uptake. No decrease of kOH was observed as OH concentrations increased. These observations of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.},
doi = {10.5194/acp-16-11563-2016},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 18,
volume = 16,
place = {Germany},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.5194/acp-16-11563-2016

Citation Metrics:
Cited by: 6works
Citation information provided by
Web of Science

Save / Share:
  • Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigatedmore » with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~100 µg m -3 of pure H 2SO 4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical ( k OH) was estimated as 4.0 ± 2.0 ×10 -13 cm 3 molec -1 s -1, which is equivalent to more than a 2-week lifetime. A similar k OH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 10 12 molec cm -3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients ( γ OH = 0.59±0.33 in SE US and γ OH = 0.68±0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of k OH and γ OH was observed, consistent with surface-area-limited OH uptake. No decrease of k OH was observed as OH concentrations increased. These observations of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.« less
  • Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C 5H 6O + ( m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine f C5H6O ( f C5H6O= C 5H 6O +/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher f C5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. f C5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low f C5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of f CO2 vs. f C5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the f C5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.« less
    Cited by 36
  • With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are a subject of intense research because particles affect Earth’s climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2, or more, higher than those typically used in coupled chemistry-climate models.more » SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 10 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the pre-industrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest a more complex representation of NOx dependent SOA yields may be important in models.« less
  • The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is appliedmore » to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.« less
  • Here, we present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO 2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C 5 compounds were major components (~50%) of SOA. The SOA composition and effective volatility evolved both as amore » function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, >30% of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.« less
    Cited by 1