skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

Abstract

Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, the proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.

Authors:
 [1];  [1];  [2];  [3];  [3];  [1];  [1];  [4]
  1. Tennessee State Univ., Nashville, TN (United States)
  2. Chinese Academy of Sciences (CAS), Beijing (China); Univ. of Oklahoma, Norman, OK (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. of Oklahoma, Norman, OK (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1328324
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Soil Biology and Biochemistry
Additional Journal Information:
Journal Volume: 101; Journal Issue: C; Journal ID: ISSN 0038-0717
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 58 GEOSCIENCES; nitrogen fertilization; extracellular enzyme activities (EEA); soil organic carbon(SOC); microbial biomass carbon (MBC); meta-analysis

Citation Formats

Jian, Siyang, Li, Jianwei, Chen, Ji, Wang, Gangsheng, Mayes, Melanie A., Dzantor, Kudjo E., Hui, Dafeng, and Luo, Yiqi. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. United States: N. p., 2016. Web. doi:10.1016/j.soilbio.2016.07.003.
Jian, Siyang, Li, Jianwei, Chen, Ji, Wang, Gangsheng, Mayes, Melanie A., Dzantor, Kudjo E., Hui, Dafeng, & Luo, Yiqi. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. United States. doi:10.1016/j.soilbio.2016.07.003.
Jian, Siyang, Li, Jianwei, Chen, Ji, Wang, Gangsheng, Mayes, Melanie A., Dzantor, Kudjo E., Hui, Dafeng, and Luo, Yiqi. 2016. "Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis". United States. doi:10.1016/j.soilbio.2016.07.003. https://www.osti.gov/servlets/purl/1328324.
@article{osti_1328324,
title = {Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis},
author = {Jian, Siyang and Li, Jianwei and Chen, Ji and Wang, Gangsheng and Mayes, Melanie A. and Dzantor, Kudjo E. and Hui, Dafeng and Luo, Yiqi},
abstractNote = {Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, the proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.},
doi = {10.1016/j.soilbio.2016.07.003},
journal = {Soil Biology and Biochemistry},
number = C,
volume = 101,
place = {United States},
year = 2016,
month = 7
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • Soil C sequestration (SCS) has the potential to attenuate increasing atmospheric CO2 and mitigate greenhouse warming. Understanding of this potential and complex soil C process is aided by the use of simulation models. We evaluated the ability of the EPIC model to simulate corn (Zea mays L.) yields and soil organic C (SOC) at Arlington, WI during 1958-1991. Corn was grown continuously on a Typic Argiudoll with 3 N levels: LTN1 (control), LTN2 (medium), and LTN3 (high). The LTN2 N rate started at 56 kg ha-1 (1958), increased to 92 kg ha-1 (1963), and reached 140 kg ha-1 (1973). Themore » LTN3 N rate was maintained at twice the LTN2 level. In 1984, each plot was divided into 4 subplots receiving N at 0, 84, 168 and 252 kg ha-1. Five treatments were used for model evaluation. Percent errors of mean yield predictions during 1958-1983 decreased as N rate increased (LTN1 = -5.0%, LTN2 = 3.5%, and LTN3 = 1.0%). Percent errors of mean yield predictions during 1985-1991 were larger than during the first period. Simulated and observed mean yields during 1958-1991 were highly correlated (R2 = 0.961**). Simulated SOC agreed well with observed values with percent errors from -5.8% to 0.5% in 1984 and from -5.1% to 0.7% in 1990. EPIC captured the dynamics of SOC, SCS, and microbial biomass. Simulated net N mineralization rates were lower than those from lab incubations. Improvements in EPIC's ability to predict annual variability of crop yields may lead to improved estimates of SCS.« less
  • Here, the nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO 2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO 2 experimental data available in the literature. The results showed that CO 2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partiallymore » supporting one of the basic assumptions in the PNL hypothesis that elevated CO 2 results in more N sequestered in organic pools. However, CO 2 enrichment significantly increased the N influx via biological N fixation and the loss via N 2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO 2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO 2 conditions in spite of the increases in plant N sequestration and N 2O emission. Moreover, our syntheses indicate that CO 2 enrichment increases soil ammonium (NH 4 +) to nitrate (NO 3 ) ratio. The changed NH 4 +/NO 3 ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.« less
    Cited by 3
  • Here, the nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO 2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO 2 experimental data available in the literature. The results showed that CO 2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partiallymore » supporting one of the basic assumptions in the PNL hypothesis that elevated CO 2 results in more N sequestered in organic pools. However, CO 2 enrichment significantly increased the N influx via biological N fixation and the loss via N 2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO 2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO 2 conditions in spite of the increases in plant N sequestration and N 2O emission. Moreover, our syntheses indicate that CO 2 enrichment increases soil ammonium (NH 4 +) to nitrate (NO 3 ) ratio. The changed NH 4 +/NO 3 ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.« less
  • Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analysesmore » were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.« less