skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4935238· OSTI ID:1225557

Here, nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Grant/Contract Number:
AC04-94AL85000
OSTI ID:
1225557
Alternate ID(s):
OSTI ID: 1327909; OSTI ID: 1420597
Report Number(s):
SAND-2016-9478J
Journal Information:
Applied Physics Letters, Journal Name: Applied Physics Letters Vol. 107 Journal Issue: 19; ISSN 0003-6951
Publisher:
American Institute of PhysicsCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science