skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate

Abstract

The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is to identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performedmore » inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; « less
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1327130
Report Number(s):
PNNL-SA-112581
Journal ID: ISSN 1877-9441; 48263; KP1704020
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Current Inorganic Chemistry; Journal Volume: 6; Journal Issue: 2
Country of Publication:
United States
Language:
English
Subject:
Environmental Molecular Sciences Laboratory

Citation Formats

Ruby, Christian, Naille, Sébastien, Ona-Nguema, Georges, Morin, Guillaume, Mallet, Martine, Guerbois, Delphine, Barthélémy, Kévin, Etique, Marjorie, Zegeye, Asfaw, Zhang, Yuhai, Boumaïza, Hella, Al-Jaberi, Muayad, Renard, Aurélien, Noël, Vincent, Binda, Paul, Hanna, Khalil, Despas, Christelle, Abdelmoula, Mustapha, Kukkadapu, Ravi, Sarrias, Joseph, Albignac, Magali, Rocklin, Pascal, Nauleau, Fabrice, Hyvrard, Nathalie, and Génin, Jean-Marie. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate. United States: N. p., 2016. Web. doi:10.2174/1877944106999160603125459.
Ruby, Christian, Naille, Sébastien, Ona-Nguema, Georges, Morin, Guillaume, Mallet, Martine, Guerbois, Delphine, Barthélémy, Kévin, Etique, Marjorie, Zegeye, Asfaw, Zhang, Yuhai, Boumaïza, Hella, Al-Jaberi, Muayad, Renard, Aurélien, Noël, Vincent, Binda, Paul, Hanna, Khalil, Despas, Christelle, Abdelmoula, Mustapha, Kukkadapu, Ravi, Sarrias, Joseph, Albignac, Magali, Rocklin, Pascal, Nauleau, Fabrice, Hyvrard, Nathalie, & Génin, Jean-Marie. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate. United States. doi:10.2174/1877944106999160603125459.
Ruby, Christian, Naille, Sébastien, Ona-Nguema, Georges, Morin, Guillaume, Mallet, Martine, Guerbois, Delphine, Barthélémy, Kévin, Etique, Marjorie, Zegeye, Asfaw, Zhang, Yuhai, Boumaïza, Hella, Al-Jaberi, Muayad, Renard, Aurélien, Noël, Vincent, Binda, Paul, Hanna, Khalil, Despas, Christelle, Abdelmoula, Mustapha, Kukkadapu, Ravi, Sarrias, Joseph, Albignac, Magali, Rocklin, Pascal, Nauleau, Fabrice, Hyvrard, Nathalie, and Génin, Jean-Marie. Mon . "Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate". United States. doi:10.2174/1877944106999160603125459.
@article{osti_1327130,
title = {Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate},
author = {Ruby, Christian and Naille, Sébastien and Ona-Nguema, Georges and Morin, Guillaume and Mallet, Martine and Guerbois, Delphine and Barthélémy, Kévin and Etique, Marjorie and Zegeye, Asfaw and Zhang, Yuhai and Boumaïza, Hella and Al-Jaberi, Muayad and Renard, Aurélien and Noël, Vincent and Binda, Paul and Hanna, Khalil and Despas, Christelle and Abdelmoula, Mustapha and Kukkadapu, Ravi and Sarrias, Joseph and Albignac, Magali and Rocklin, Pascal and Nauleau, Fabrice and Hyvrard, Nathalie and Génin, Jean-Marie},
abstractNote = {The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is to identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.},
doi = {10.2174/1877944106999160603125459},
journal = {Current Inorganic Chemistry},
number = 2,
volume = 6,
place = {United States},
year = {Mon Jun 27 00:00:00 EDT 2016},
month = {Mon Jun 27 00:00:00 EDT 2016}
}