skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice

Abstract

Abnormal expression of CD200/CD200R1 may contribute to the immunologic abnormalities in patients with systemic lupus erythematosus (SLE). This study aimed to assess the function of CD200/CD200R1and impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice. Female NZB/WF1 mice were treated with CD200-Fc or control for 4 weeks. Plasma samples were collected to measure autoantibody levels. The expression levels of CD200/CD200R1 in peripheral blood mononuclear cells (PBMCs) and splenocytes were examined. The percentage of CD200/CD200R1-positive cells in splenocytes from NZB/WF1 mice was lower than that of C57BL/6 mice (p<0.05). The plasma level of anti-dsDNA was significantly higher in NZB/WF1 mice than C57BL/6 mice (p<0.001). However, the anti-dsDNA levels decreased (p=0.047) after CD200-Fc treatment. Finally, CD200-Fc reduced the levels of IL-6 (p=0.017) and IL-10 (p=0.03) in the dendritic cell culture supernatant. This study suggests that the immunosuppressive CD200/CD200R1 signaling pathway might be involved in the immunopathology of NZB/WF1 mice; the present results merit further exploration of agents that can modulate the CD200/CD200FR1 pathway as a therapy for human lupus.

Authors:
 [1];  [1];  [1];  [1]
  1. Peking Union Medical College Hospital, Beijing (China). Key Lab. of Rheumatology & Clinical Immunology, Dept. of Rheumatology & Clinical Immunology; Chinese Academy of Medical Science (CAS), Beijing (China). Clinical Immunology Center
Publication Date:
Research Org.:
Washington Univ., St. Louis, MO (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NNSFC); Beijing Municipal Natural Science Foundation; USDOE
OSTI Identifier:
1326665
Grant/Contract Number:
SC0001035; 81325019; 81172859; 81273312; 81302594; 81550023; 7141008; 20120217; 2011-4001-02
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; Lupus; CD200-Fc; NZB/WF1; Lupus nephritis

Citation Formats

Yin, Yufeng, Zhao, Lidan, Zhang, Fengchun, and Zhang, Xuan. Impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice. United States: N. p., 2016. Web. doi:10.1038/srep31874.
Yin, Yufeng, Zhao, Lidan, Zhang, Fengchun, & Zhang, Xuan. Impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice. United States. doi:10.1038/srep31874.
Yin, Yufeng, Zhao, Lidan, Zhang, Fengchun, and Zhang, Xuan. 2016. "Impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice". United States. doi:10.1038/srep31874. https://www.osti.gov/servlets/purl/1326665.
@article{osti_1326665,
title = {Impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice},
author = {Yin, Yufeng and Zhao, Lidan and Zhang, Fengchun and Zhang, Xuan},
abstractNote = {Abnormal expression of CD200/CD200R1 may contribute to the immunologic abnormalities in patients with systemic lupus erythematosus (SLE). This study aimed to assess the function of CD200/CD200R1and impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice. Female NZB/WF1 mice were treated with CD200-Fc or control for 4 weeks. Plasma samples were collected to measure autoantibody levels. The expression levels of CD200/CD200R1 in peripheral blood mononuclear cells (PBMCs) and splenocytes were examined. The percentage of CD200/CD200R1-positive cells in splenocytes from NZB/WF1 mice was lower than that of C57BL/6 mice (p<0.05). The plasma level of anti-dsDNA was significantly higher in NZB/WF1 mice than C57BL/6 mice (p<0.001). However, the anti-dsDNA levels decreased (p=0.047) after CD200-Fc treatment. Finally, CD200-Fc reduced the levels of IL-6 (p=0.017) and IL-10 (p=0.03) in the dendritic cell culture supernatant. This study suggests that the immunosuppressive CD200/CD200R1 signaling pathway might be involved in the immunopathology of NZB/WF1 mice; the present results merit further exploration of agents that can modulate the CD200/CD200FR1 pathway as a therapy for human lupus.},
doi = {10.1038/srep31874},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • FTY720 is a novel investigational agent targeting the sphingosine 1-phosphate (S1P) receptors with an ability to cause immunosuppression by inducing lymphocyte sequestration in lymphoid organs. Systemic lupus erythematosus (SLE) is refractory autoimmune disease characterized by the production of a wide variety of autoantibodies and immune complex (IC)-mediated lupus nephritis. Among several SLE-prone strains of mice, BXSB is unique in terms of the disease-associated monocytosis in periphery and the reduced frequency of marginal zone B (MZ B) cells in spleen. In the present study, we examined the effect of FTY720 on lupus nephritis of BXSB mice. FTY720 treatment resulted in amore » marked decrease in lymphocytes, but not monocytes, in peripheral blood, and caused relocalization of marginal zone B (MZ B) cells into the follicle in the spleen. These changes did not affect the production of autoantibodies, thus IgG and C3 were deposited in glomeruli in FTY720-treated mice. Despite these IC depositions, FTY720-treated mice showed survival advantage with the improved proteinuria. Histological analysis revealed that FTY720 suppressed mesangial cell proliferation and inflammatory cell infiltration. These results suggest that FTY720 ameliorates lupus nephritis by inhibiting the end-stage inflammatory process following IC deposition in glomeruli.« less
  • To further define the underlying mechanisms of immune suppression induced by UV-B irradiation, we have examined the kinetics of homing patterns of in vitro UV-B-irradiated and gamma-irradiated-thoracic duct lymphocytes (TDL) compared to dendritic cells (DC). Our findings show that {sup 111}In-oxine-labeled TDL specifically home to the spleen, liver, lymph nodes, and bone marrow with subsequent recirculation of a large number of cells from the spleen to lymph nodes. In contrast, DC preferentially migrate to the spleen and liver with a relatively insignificant distribution to lymph nodes and an absence of subsequent recirculation. Splenectomy prior to cell injection significantly diverts themore » spleen-seeking DC to the liver but not to the lymph nodes, while the homing of TDL to lymph nodes is significantly increased. In vitro exposure of 111In-oxine labeled TDL to gamma irradiation does not significantly impair immediate homing to lymphoid tissues but inhibits cell recirculation between 3 and 24 hr. In contrast, gamma irradiation does not affect the tissue distribution of labeled DC, suggesting that DC are more radioresistant to gamma irradiation than TDL. Unlike the findings in animals injected with gamma-irradiated cells, UV-B irradiation virtually abolished the homing of TDL to lymph nodes and significantly reduced the homing of the spleen-seeking DC to the splenic compartment while a large number of cells were sequestered in the liver. The results of in vitro cell binding assay show that TDL, unlike DC, have the capacity to bind to high endothelial venules (HEV) within lymph node frozen sections while gamma and UV-B irradiation significantly inhibit the binding of TDL to lymph node HEV.« less
  • Platelet activating factor (PAF) is present in urine from humans and experimental animals in normal conditions. Very little is known about changes in PAF urinary excretion under pathologic conditions and no data are available about the origin of PAF in the urine. In the present study we explored the possibility that immunologic renal disease is associated with an increase in PAF urinary excretion using gas chromatography-mass spectrometry technique. To clarify the renal or extrarenal origin of urinary PAF we evaluated whether exogenously administered PAF (1-(1{prime},2{prime}-{sup 3}H)alkyl) is filtered through the glomerulus and excreted in the urine. The results show that:more » (1) urine from mice with lupus nephritis in the early phase of the disease contained amounts of PAF comparable to those excreted in normal mouse urine, (2) PAF levels increased when animals started to develop high grade proteinuria, (3) after intravenous injection of ({sup 3}H) PAF In nephritic mice, a negligible amount of ({sup 3}H) ether lipid, corresponding to ({sup 3}H)1-alkyl -2-acyl-3-phosphocholine (alkyl-2-acyl-GPC), was recovered from the 24 h urine extract.« less
  • Systemic lupus erythematosus (SLE) is considered to be the quintessential autoimmune disease. It has not been possible to induce SLE in animal models by DNA immunization or by challenge with anti-DNA antibodies. The authors report a murine model of SLE-like disease induced by immunization of C3H.SW female mice with a common human monoclonal anti-DNA idiotype (16/6 idiotype). Following a booster injection with the 16/6 idiotype, high levels of murine anti-16/6 and anti-anti-16/6 antibodies (associated with anti-DNA activity) were detected in the sera of the immunized mice. Elevated titers of autoantibodies reacting with DNA, poly(I), poly(dT), ribonucleoprotein, autoantigens (Sm, SS-A (Ro),more » and SS-B (La)), and cardiolipin were noted. The serological findings were associated with increased erythrocyte sedimentation rate, leukopenia, proteinuria, immune complex deposition in the glomerular mesangium, and sclerosis of the glomeruli. The immune complexes in the kidneys were shown to contain the 16/6 idiotype. This experimental SLE-like model may be used to elucidate the mechanisms underlying SLE.« less
  • Very low doses of ionizing radiation can enhance immune responsiveness and extend life span in normal mice. Total lymphoid irradiation at relatively high doses of radiation can retard autoimmune disease in genetically susceptible mice, but may impair immune function. In order to determine whether fractionated low dose exposure would enhance immune response and retard lymphadenopathy in autoimmune-prone mice, groups of C57B1/6 lpr/lpr mice were sham irradiated, exposed 5 days/week for 4 weeks to 0.04 Gy/day, or to 0.1 Gy/day. After the radiation protocol, the mice were evaluated for splenic T cell proliferative capacity, T cell subset distribution, and total spleenmore » cell numbers. The independent and additive effect of caloric restriction was additionally assessed since this intervention has been shown to increase immune responsiveness and retard disease progression in autoimmune-prone mice. The congenic C57B1/6 +/+ immunologically normal strain was evaluated in parallel as congenic control. The results indicated that mitogen-stimulated proliferation was up-regulated in both strains of mice after exposure to 0.04 Gy/day. The proliferative capacity was additively enhanced when radiation at this dose level was combined with caloric restriction. Exposure to 0.1 Gy/day resulted in further augmentation of proliferative response in the lpr/lpr mice, but was depressive in the +/+ mice. Although the proportions of the various T cell subpopulations were altered in both strains after exposure to LDR, the specific subset alterations were different within each strain. Additional experiments were subsequently performed to assess whether the thymus is required for LDR-induced immune potentiation. Thymectomy completely abrogated the LDR effect in the +/+ mice, suggesting that thymic processing and/or trafficking is adaptively altered with LDR in this strain.« less