skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiotracers For Lipid Signaling Pathways In Biological Systems

Abstract

The primary focus of this project continues to be the development of radiotracers and radiotracer methodology for studying physiology and biochemistry. The compounds that have been labeled areacylethanolamines and acylglycerols that are, as classes, represented in both in plants and in animals. In the latter, some of these act as ligands for cannabinoid receptors and they are therefore known as endocannabinoids. Cannabinoid receptors are not found in plant genomes so that plants must contain other receptors and signaling systems that use acylethanolamines. Relatively little work has been done on that issue, though acylethanolamines do modulate plant growth and stress resistance, thus possessing obvious relevance to agriculture and energy production. Progress has been described in five peer-reviewed papers and seven meeting abstracts. Preparation of 2-acylglycerol lipid messengers in high purity. A novel enzymatic synthesis was developedthat gave pure 2-acylglycerols free of any rearrrangement to the thermodynamically more stable 1(3)-acylglycerol byproducts. The method utilized 1,3-dibutyryl-2-acylglycerol substrate ethanolysis by a resinimobilized lipase. Thus, pure radiolabeled 2-acylglycerols can now be conveniently prepared just prior to their utilization. These synthetic studies were published in the Journal of Medicinal Chemistry, 2011. Diacylglycerol lipase assay methodology. Diacylglycerol lipases (DAGLs) generate 2- acylglycerols, and are thus potential targetsmore » for disease- or growth-modifying agents, by means of reducing formation of 2-acylglycerols. A radioTLC assay of the hydrolysis of radiolabeled diglyceride substrate [1''-carbon-14]2-arachidonoyl-1-stearoyl-sn-glycerol has been implemented, and used to validate a novel, potentially highthroughput fluorescence resonance energy transfer (FRET) based assay. A number of new DAGL inhibitors that have selectivity for DAGLs were synthesized and screened. This work was very recently published in Bioorganic and Medicinal Chemistry Letters.Acylethanolamines. The work initially focused on myristoylethanolamine (MEA) labeled in the acyl moiety with tritium and with carbon-14. Standard coupling conditions were used and gave the desired radiotracers in decent yields. Tritiated product was needed for the search for binding sites of this signaling messenger, and C-14 labeled product for imaging using phosphorimaging screens. Additionally, C-14 MEA was prepared labeled in the ethanolamine moiety. Fluorine-18 labeled acylethanolamines. A multi-step synthesis was performed to obtain unlabeled N-(16- fluorohexadecanoyl)ethanolamide for an HPLC standard via the precursor 16-bromo-N- [2[(tetrahydro-2Hpyran-2-yl)oxy]ethyl]hexadecanoylamide. Near-anhydrous F-18 and the bromo precursor (approximately 2-3 mg) in acetonitrile (0.5 ml) were heated with a PETWave microwave reactor for 10 min at 80 °C. F-18 incorporation was checked using silica-gel TLC (8:92 methanol/chloroform). Deprotection was carried out using TFA. The crude product was purified by semi-preparative ODS HPLC (80:20 AcN/ H2O). The product peak was diluted in water, concentrated on an SPE column, and eluted in 1 mL EtOH. F-18 incorporation to form the THP protected product was >90% with negligible side products observed. Deprotection and HPLC purification proceeded successfully with >99% radiochemical l purity. Brain distribution studies were done in mice. This work was presented at the Society of Nuclear Medicine meeting in June 2012. Subsequent more detailed studies including whole body tissue distribution studies, microPET experiments and radiochromatographic studies were published in ACS Chemical Neurosciences in 2014. Iodine-125 labeled acylethanolamines. The precursor 12-bromo-N-[2[(tetrahydro-2H-pyran-2-yl)oxy]ethyl]dodecanoylamide was prepared and a 1 mg sample was subject to exchange labeling withradioiodide in refluxing acetonitrile for 1 hour. HPLC analysis as above indicated incorporation of about10% of the radioactivity into a compound with the expected retention time of the corresponding iodocompound. Treatment with TFA converted the radioactivity into a compound with the expected retentiontime of 12-iodododenanoyl ethanolamine. Radiotracer studies in plants. One of the aims of this funding was to follow up the studies of Tripathy et al. (Plant Physiol., 2003) who first reported high affinity binding sites for tritiated myristoylethanolamine in plants, and also reported blockage of these sites by the cannabinoid receptor antagonist AM281. Because plant genomes do not contain genes for cannabinoid receptors, this was an intriguing report. I-125 labeled AM281 was therefore prepared, to facilitate identification of binding sites for this compound in Arabodopsis thaliana plants. However, such sites could not be found, the binding studies were repeated in tobacco plants. Again, binding sites for AM281 were not found. Additionally, it has become evident that clear demonstration of binding sites for tritiated MEA is obscured by metabolic incorporation of radioactivity into plant tissues. Studies on this issue are being aggressively pursued. Binding methodologies used in experiments with animal tissues require modification for their optimal use with plant tissues. Detailed studies of [14C]myristoylethanolamine isotopomers and of [14C]arachidonoylethanolamine isotopomers Since the labeled compounds being prepared for experiments with plants may have utility in Nuclear Medicine, studies were conducted with some of these compounds in mice. The brain uptake of C-14 MEA labeled in either acyl or ethanolamine moiety was 3-4 fold higher than uptake of C-14 myristic acid or C-14 ethanolamine. Carrier MEA increased brain uptake. Autoradiographs of MEA showed regionally specific uptake, with somewhat different patterns for acyl and ethanolamine isotopomers. It is hypothesized that these labeled compounds might form the basis of autoradiographic imaging of regional activity of enzymes such as fatty acid amide hydrolase, which may regulate endocannabinoid tone in animals. Early results were presented at the 2011 ICRS meeting, and at the 2012 Society for Neurosciences. Narachidonoylethanolamine is an endocannabinoid signaling messenger in animals and is known as “anandamide”. It is one of several families of signaling molecules derived from arachidonic acid, the principal omega-6 polyunsaturated fatty acids (PUFA’s) in animal species. Other derivatives of arachidonic acid include thromboxanes and prostaglandins. Full details of the studies with the ethanolamide isotopomers were a part of the PhD dissertation of Kun Hu (nee Qian), and were submitted for publication to Nuclear Medicine and Biology in August 2016. Syntheses of [14C]docosahexanoylethanolamine isotopomers and preliminary biological investigations Docosahexaenoic acid (DHA) is the omega-3 PUFA that can be regarded in some respects as the counterpart of arachidonic acid in the omega-6 series. While arachidonic acid is proinflammatory, DHA is anti-inflammatory, and foods high in DHA (or artificially enriched in DHA) are commonly regarded as promoting health. In contrast to the large literature on the Nethanolamide of arachidonic acid (i.e. the endocannabinoid anandamide) as of now (9/25/2016) there are only six papers on the corresponding ethanolamide of DHA, and when our studies under this grant began there were none. Beneficial actions of endogenously produced DHAethanolamine (“synaptamide”) have been indicated, and to help elucidate the possible roles of synaptamide, we have synthesized this molecule for the first time labeled with C-14 in either the ethanolamine moiety or the fatty acid moiety. Studies of the disposition of endogenously administered isotopomers of DHA-ethanolamine are in progress, to complement tissue culture experiments evaluation hypothesized protective effects of this DHA derivative.« less

Authors:
 [1]
  1. Northeastern Univ., Boston, MA (United States)
Publication Date:
Research Org.:
Northeastern Univ., Boston, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1326385
Report Number(s):
DOE-NORTHEASTERN-05251
DOE Contract Number:
SC0005251
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; radiotracer, lipid signalling molecules, carbon-14, flourine-18

Citation Formats

Gatley, S. J. Radiotracers For Lipid Signaling Pathways In Biological Systems. United States: N. p., 2016. Web. doi:10.2172/1326385.
Gatley, S. J. Radiotracers For Lipid Signaling Pathways In Biological Systems. United States. doi:10.2172/1326385.
Gatley, S. J. 2016. "Radiotracers For Lipid Signaling Pathways In Biological Systems". United States. doi:10.2172/1326385. https://www.osti.gov/servlets/purl/1326385.
@article{osti_1326385,
title = {Radiotracers For Lipid Signaling Pathways In Biological Systems},
author = {Gatley, S. J.},
abstractNote = {The primary focus of this project continues to be the development of radiotracers and radiotracer methodology for studying physiology and biochemistry. The compounds that have been labeled areacylethanolamines and acylglycerols that are, as classes, represented in both in plants and in animals. In the latter, some of these act as ligands for cannabinoid receptors and they are therefore known as endocannabinoids. Cannabinoid receptors are not found in plant genomes so that plants must contain other receptors and signaling systems that use acylethanolamines. Relatively little work has been done on that issue, though acylethanolamines do modulate plant growth and stress resistance, thus possessing obvious relevance to agriculture and energy production. Progress has been described in five peer-reviewed papers and seven meeting abstracts. Preparation of 2-acylglycerol lipid messengers in high purity. A novel enzymatic synthesis was developedthat gave pure 2-acylglycerols free of any rearrrangement to the thermodynamically more stable 1(3)-acylglycerol byproducts. The method utilized 1,3-dibutyryl-2-acylglycerol substrate ethanolysis by a resinimobilized lipase. Thus, pure radiolabeled 2-acylglycerols can now be conveniently prepared just prior to their utilization. These synthetic studies were published in the Journal of Medicinal Chemistry, 2011. Diacylglycerol lipase assay methodology. Diacylglycerol lipases (DAGLs) generate 2- acylglycerols, and are thus potential targets for disease- or growth-modifying agents, by means of reducing formation of 2-acylglycerols. A radioTLC assay of the hydrolysis of radiolabeled diglyceride substrate [1''-carbon-14]2-arachidonoyl-1-stearoyl-sn-glycerol has been implemented, and used to validate a novel, potentially highthroughput fluorescence resonance energy transfer (FRET) based assay. A number of new DAGL inhibitors that have selectivity for DAGLs were synthesized and screened. This work was very recently published in Bioorganic and Medicinal Chemistry Letters.Acylethanolamines. The work initially focused on myristoylethanolamine (MEA) labeled in the acyl moiety with tritium and with carbon-14. Standard coupling conditions were used and gave the desired radiotracers in decent yields. Tritiated product was needed for the search for binding sites of this signaling messenger, and C-14 labeled product for imaging using phosphorimaging screens. Additionally, C-14 MEA was prepared labeled in the ethanolamine moiety. Fluorine-18 labeled acylethanolamines. A multi-step synthesis was performed to obtain unlabeled N-(16- fluorohexadecanoyl)ethanolamide for an HPLC standard via the precursor 16-bromo-N- [2[(tetrahydro-2Hpyran-2-yl)oxy]ethyl]hexadecanoylamide. Near-anhydrous F-18 and the bromo precursor (approximately 2-3 mg) in acetonitrile (0.5 ml) were heated with a PETWave microwave reactor for 10 min at 80 °C. F-18 incorporation was checked using silica-gel TLC (8:92 methanol/chloroform). Deprotection was carried out using TFA. The crude product was purified by semi-preparative ODS HPLC (80:20 AcN/ H2O). The product peak was diluted in water, concentrated on an SPE column, and eluted in 1 mL EtOH. F-18 incorporation to form the THP protected product was >90% with negligible side products observed. Deprotection and HPLC purification proceeded successfully with >99% radiochemical l purity. Brain distribution studies were done in mice. This work was presented at the Society of Nuclear Medicine meeting in June 2012. Subsequent more detailed studies including whole body tissue distribution studies, microPET experiments and radiochromatographic studies were published in ACS Chemical Neurosciences in 2014. Iodine-125 labeled acylethanolamines. The precursor 12-bromo-N-[2[(tetrahydro-2H-pyran-2-yl)oxy]ethyl]dodecanoylamide was prepared and a 1 mg sample was subject to exchange labeling withradioiodide in refluxing acetonitrile for 1 hour. HPLC analysis as above indicated incorporation of about10% of the radioactivity into a compound with the expected retention time of the corresponding iodocompound. Treatment with TFA converted the radioactivity into a compound with the expected retentiontime of 12-iodododenanoyl ethanolamine. Radiotracer studies in plants. One of the aims of this funding was to follow up the studies of Tripathy et al. (Plant Physiol., 2003) who first reported high affinity binding sites for tritiated myristoylethanolamine in plants, and also reported blockage of these sites by the cannabinoid receptor antagonist AM281. Because plant genomes do not contain genes for cannabinoid receptors, this was an intriguing report. I-125 labeled AM281 was therefore prepared, to facilitate identification of binding sites for this compound in Arabodopsis thaliana plants. However, such sites could not be found, the binding studies were repeated in tobacco plants. Again, binding sites for AM281 were not found. Additionally, it has become evident that clear demonstration of binding sites for tritiated MEA is obscured by metabolic incorporation of radioactivity into plant tissues. Studies on this issue are being aggressively pursued. Binding methodologies used in experiments with animal tissues require modification for their optimal use with plant tissues. Detailed studies of [14C]myristoylethanolamine isotopomers and of [14C]arachidonoylethanolamine isotopomers Since the labeled compounds being prepared for experiments with plants may have utility in Nuclear Medicine, studies were conducted with some of these compounds in mice. The brain uptake of C-14 MEA labeled in either acyl or ethanolamine moiety was 3-4 fold higher than uptake of C-14 myristic acid or C-14 ethanolamine. Carrier MEA increased brain uptake. Autoradiographs of MEA showed regionally specific uptake, with somewhat different patterns for acyl and ethanolamine isotopomers. It is hypothesized that these labeled compounds might form the basis of autoradiographic imaging of regional activity of enzymes such as fatty acid amide hydrolase, which may regulate endocannabinoid tone in animals. Early results were presented at the 2011 ICRS meeting, and at the 2012 Society for Neurosciences. Narachidonoylethanolamine is an endocannabinoid signaling messenger in animals and is known as “anandamide”. It is one of several families of signaling molecules derived from arachidonic acid, the principal omega-6 polyunsaturated fatty acids (PUFA’s) in animal species. Other derivatives of arachidonic acid include thromboxanes and prostaglandins. Full details of the studies with the ethanolamide isotopomers were a part of the PhD dissertation of Kun Hu (nee Qian), and were submitted for publication to Nuclear Medicine and Biology in August 2016. Syntheses of [14C]docosahexanoylethanolamine isotopomers and preliminary biological investigations Docosahexaenoic acid (DHA) is the omega-3 PUFA that can be regarded in some respects as the counterpart of arachidonic acid in the omega-6 series. While arachidonic acid is proinflammatory, DHA is anti-inflammatory, and foods high in DHA (or artificially enriched in DHA) are commonly regarded as promoting health. In contrast to the large literature on the Nethanolamide of arachidonic acid (i.e. the endocannabinoid anandamide) as of now (9/25/2016) there are only six papers on the corresponding ethanolamide of DHA, and when our studies under this grant began there were none. Beneficial actions of endogenously produced DHAethanolamine (“synaptamide”) have been indicated, and to help elucidate the possible roles of synaptamide, we have synthesized this molecule for the first time labeled with C-14 in either the ethanolamine moiety or the fatty acid moiety. Studies of the disposition of endogenously administered isotopomers of DHA-ethanolamine are in progress, to complement tissue culture experiments evaluation hypothesized protective effects of this DHA derivative.},
doi = {10.2172/1326385},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Technical Report:

Save / Share:
  • This grant was situated at the University of Missouri to train Ph.D. scientists in radiochemistry and synthetic chemistry in conjunction with Faculty from the Interdisciplinary Plant Group, Division of Biological Sciences, the MU Research Reactor Center, Molecular Biology and the Radiopharmaceutical Sciences Institute. This project was collaborative with Brookhaven National Laboratory (Richard Ferrieri, PI). Projects for the Ph.D. candidates included novel probe development for peptides, nucleosides, small molecules or radiometals, the direct use of radiometals as probes, or nuclear techniques for analysis. The projects for the postdoctoral fellow involved synthetic chemistry for the preparation of precursors for novel tracers thatmore » will be radiolabeled with 18F or other appropriate radionuclides. The skill sets of our team members allowed us to prepare probes with positron or single photon emitters, as well as ones that are dual-labeled (fluorescent and radiolabeled). We focused our technical advances to those that will be broadly applicable to any research field.« less
  • The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches to apply to these problems using confocal microscopy and flow cytometry to detail changes at low dose/dose-rate in order to understand individual cell responses, and will establish our mathematical models based on the experimental findings resulting from changes in DNA repair, apoptosis and proliferation.« less
  • The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches to apply to these problems using confocal microscopy and flow cytometry to detail changes at low dose/dose-rate in order to understand individual cell responses, and will establish our mathematical models based on the experimental findings resulting from changes in DNA repair, apoptosis and proliferation.« less
  • Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications formore » cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal by measuring alterations in cell growth pathways in the human MCF-7 breast cancer cell line using functional cell proliferation and reporter assays in combination with new macroarray technology after exposure to PhIP and the herbal tonics.« less
  • The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.