skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

Abstract

Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interaction between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore,more » we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

Authors:
 [1];  [1]; ORCiD logo [1]
  1. Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States)
Publication Date:
Research Org.:
Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1326371
Grant/Contract Number:
SC0014183
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Microbiological Methods
Additional Journal Information:
Journal Volume: 130; Journal Issue: C; Journal ID: ISSN 0167-7012
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 3-D printing; biomass containment; Cellvibrio japonicus; lignocellulose; polysaccharide degradation

Citation Formats

Nelson, Cassandra E., Beri, Nina R., and Gardner, Jeffrey G. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates. United States: N. p., 2016. Web. doi:10.1016/j.mimet.2016.09.013.
Nelson, Cassandra E., Beri, Nina R., & Gardner, Jeffrey G. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates. United States. doi:10.1016/j.mimet.2016.09.013.
Nelson, Cassandra E., Beri, Nina R., and Gardner, Jeffrey G. 2016. "Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates". United States. doi:10.1016/j.mimet.2016.09.013. https://www.osti.gov/servlets/purl/1326371.
@article{osti_1326371,
title = {Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates},
author = {Nelson, Cassandra E. and Beri, Nina R. and Gardner, Jeffrey G.},
abstractNote = {Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interaction between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.},
doi = {10.1016/j.mimet.2016.09.013},
journal = {Journal of Microbiological Methods},
number = C,
volume = 130,
place = {United States},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
  • Radial InP/InAsP/InP heterostructure nanowires (NWs) on SiO{sub 2}-mask-pattered Si substrates were reported using self-catalyzed InP NWs. Self-catalyzed growth was performed using low growth temperatures and high group-III flow rates, and vertical InP NWs were formed on the mask openings. The diameter and tapering of the self-catalyzed InP NWs were controlled by the introduction of HCl and H{sub 2}S gases during the NW growth, and InP NWs that have a straight region with decreased diameter were formed. Radial InP/InAsP/InP quantum wells (QWs) were grown on the sidewall of the vertical InP NWs on Si substrates. Room-temperature photoluminescence of single NWs frommore » the QW was clearly observed, which exhibited the potential of building blocks for vertical-type optical devices on Si substrates.« less
  • Twenty-five years ago the desktop computer started becoming ubiquitous in the scientific lab. Researchers were delighted with its ability to both control instrumentation and acquire data on a single system, but they were not completely satisfied. There were often gaps in knowledge that they thought might be gained if they just had more data and they could get the data faster. Computer technology has evolved in keeping with Moore’s Law meeting those desires; however those improvements have of late become both a boon and bane for researchers. Computers are now capable of producing high speed data streams containing terabytes ofmore » information; capabilities that evolved faster than envisioned last century. Software to handle large scientific data sets has not kept up. How much information might be lost through accidental mismanagement or how many discoveries are missed through data overload are now vital questions. An important new task in most scientific disciplines involves developing methods to address those issues and to create the software that can handle large data sets with an eye towards scalability. This software must create archived, indexed, and searchable data from heterogeneous instrumentation for the implementation of a strong data-driven materials development strategy. At the National Center for Photovoltaics in the National Renewable Energy Laboratory, we began development a few years ago on a Laboratory Information Management System (LIMS) designed to handle lab-wide scientific data acquisition, management, processing and mining needs for physics and materials science data, and with a specific focus towards future scalability for new equipment or research focuses. We will present the decisions, processes, and problems we went through while building our LIMS system for materials research, its current operational state and our steps for future development.« less
  • The University of Michigan has been fabricating targets for high-energy-density experiments for the past decade. We utilize the technique of machined acrylic bodies and mating components acting as constraints to build repeatable targets. Combining 3D printing with traditional machining, we are able to take advantage of the very best part of both aspects of manufacturing. Furthermore, we present several recent campaigns to act as showcase and introduction of our techniques and our experience with 3D printing, effecting how we utilize 3D printing in our target builds.