skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

Abstract

A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (nmore » e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less

Authors:
 [1];  [1];  [1];  [2];  [3];  [1];  [4];  [1];  [5];  [4];  [6];  [5];  [4];  [5];  [7];  [1];  [5];  [8];  [9];  [3] more »;  [10];  [4];  [11];  [1];  [2];  [12];  [10];  [2];  [4];  [2];  [2];  [2];  [1];  [6];  [4];  [1];  [2];  [2];  [13];  [1];  [2];  [14];  [12];  [4];  [2];  [6];  [1];  [6] « less
  1. General Atomics, San Diego, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of Toronto, ON (Canada)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. Univ. of California, San Diego, La Jolla CA (United States)
  6. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  7. Univ. of Texas, Austin, TX (United States)
  8. Univ. of Tennessee, Knoxville, TN (United States)
  9. Dalian Univ. of Technology, Liaoning (China)
  10. Princeton Univ., Princeton, NJ (United States)
  11. Aalto Univ., Espoo (Finland)
  12. Univ. of Wisconsin, Madison, WI (United States)
  13. Univ. of California, San Diego, La Jolla, CA (United States)
  14. Institute of Plasma Physics, Anhui (China)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); General Atomics, San Diego, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1890827
Alternate Identifier(s):
OSTI ID: 1324473; OSTI ID: 1325161; OSTI ID: 1325501; OSTI ID: 1371903
Report Number(s):
LLNL-JRNL-737385; SAND-2016-4859J
Journal ID: ISSN 0029-5515; 890066; TRN: US2310091
Grant/Contract Number:  
AC52-07NA27344; AC02-09CH11466; AC04-94AL85000; AC05-00OR22725; FC02-04ER54698; FG02-07ER54917; AC52-07NA273441
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 56; Journal Issue: 12; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; divertor concept; plasma-material interactions; DIII-D; advanced tokamak; fusion reactor

Citation Formats

Guo, H. Y., Hill, D. N., Leonard, A. W., Allen, S. L., Stangeby, P. C., Thomas, D., Unterberg, E. A., Abrams, T., Boedo, J., Briesemeister, A. R., Buchenauer, D., Bykov, I., Canik, J. M., Chrobak, C., Covele, B., Ding, R., Doerner, R., Donovan, D., Du, H., Elder, D., Eldon, D., Lasa, A., Groth, M., Guterl, J., Jarvinen, A., Hinson, E., Kolemen, E., Lasnier, C. J., Lore, J., Makowski, M. A., McLean, A., Meyer, B., Moser, A. L., Nygren, R., Owen, L., Petrie, T. W., Porter, G. D., Rognlien, T. D., Rudakov, D., Sang, C. F., Samuell, C., Si, H., Schmitz, O., Sontag, A., Soukhanovskii, V., Wampler, W., Wang, H., and Watkins, J. G. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices. United States: N. p., 2016. Web. doi:10.1088/0029-5515/56/12/126010.
Guo, H. Y., Hill, D. N., Leonard, A. W., Allen, S. L., Stangeby, P. C., Thomas, D., Unterberg, E. A., Abrams, T., Boedo, J., Briesemeister, A. R., Buchenauer, D., Bykov, I., Canik, J. M., Chrobak, C., Covele, B., Ding, R., Doerner, R., Donovan, D., Du, H., Elder, D., Eldon, D., Lasa, A., Groth, M., Guterl, J., Jarvinen, A., Hinson, E., Kolemen, E., Lasnier, C. J., Lore, J., Makowski, M. A., McLean, A., Meyer, B., Moser, A. L., Nygren, R., Owen, L., Petrie, T. W., Porter, G. D., Rognlien, T. D., Rudakov, D., Sang, C. F., Samuell, C., Si, H., Schmitz, O., Sontag, A., Soukhanovskii, V., Wampler, W., Wang, H., & Watkins, J. G. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices. United States. https://doi.org/10.1088/0029-5515/56/12/126010
Guo, H. Y., Hill, D. N., Leonard, A. W., Allen, S. L., Stangeby, P. C., Thomas, D., Unterberg, E. A., Abrams, T., Boedo, J., Briesemeister, A. R., Buchenauer, D., Bykov, I., Canik, J. M., Chrobak, C., Covele, B., Ding, R., Doerner, R., Donovan, D., Du, H., Elder, D., Eldon, D., Lasa, A., Groth, M., Guterl, J., Jarvinen, A., Hinson, E., Kolemen, E., Lasnier, C. J., Lore, J., Makowski, M. A., McLean, A., Meyer, B., Moser, A. L., Nygren, R., Owen, L., Petrie, T. W., Porter, G. D., Rognlien, T. D., Rudakov, D., Sang, C. F., Samuell, C., Si, H., Schmitz, O., Sontag, A., Soukhanovskii, V., Wampler, W., Wang, H., and Watkins, J. G. 2016. "Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices". United States. https://doi.org/10.1088/0029-5515/56/12/126010. https://www.osti.gov/servlets/purl/1890827.
@article{osti_1890827,
title = {Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices},
author = {Guo, H. Y. and Hill, D. N. and Leonard, A. W. and Allen, S. L. and Stangeby, P. C. and Thomas, D. and Unterberg, E. A. and Abrams, T. and Boedo, J. and Briesemeister, A. R. and Buchenauer, D. and Bykov, I. and Canik, J. M. and Chrobak, C. and Covele, B. and Ding, R. and Doerner, R. and Donovan, D. and Du, H. and Elder, D. and Eldon, D. and Lasa, A. and Groth, M. and Guterl, J. and Jarvinen, A. and Hinson, E. and Kolemen, E. and Lasnier, C. J. and Lore, J. and Makowski, M. A. and McLean, A. and Meyer, B. and Moser, A. L. and Nygren, R. and Owen, L. and Petrie, T. W. and Porter, G. D. and Rognlien, T. D. and Rudakov, D. and Sang, C. F. and Samuell, C. and Si, H. and Schmitz, O. and Sontag, A. and Soukhanovskii, V. and Wampler, W. and Wang, H. and Watkins, J. G.},
abstractNote = {A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.},
doi = {10.1088/0029-5515/56/12/126010},
url = {https://www.osti.gov/biblio/1890827}, journal = {Nuclear Fusion},
issn = {0029-5515},
number = 12,
volume = 56,
place = {United States},
year = {Wed Sep 14 00:00:00 EDT 2016},
month = {Wed Sep 14 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Geometrical properties of a “snowflake” divertor
journal, June 2007


Tungsten divertor erosion in all metal devices: Lessons from the ITER like wall of JET
journal, July 2013


ADX: a high field, high power density, advanced divertor and RF tokamak
journal, April 2015


The ‘churning mode’ of plasma convection in the tokamak divertor region
journal, July 2014


Plasma-wall interaction and plasma behaviour in the non-boronised all tungsten ASDEX Upgrade
journal, June 2009


Effects of divertor geometry on tokamak plasmas
journal, May 2001


Compact DEMO, SlimCS: design progress and issues
journal, July 2009


Super-X divertors and high power density fusion devices
journal, May 2009


A Fusion Nuclear Science Facility for a fast-track path to DEMO
journal, October 2014


Simulation of gross and net erosion of high- Z materials in the DIII-D divertor
journal, December 2015


Simulation study for divertor design to handle huge exhaust power in the SlimCS DEMO reactor
journal, May 2009


Finalizing the ITER divertor design: The key role of SOLPS modeling
journal, December 2011


Modeling of detachment experiments at DIII-D
journal, August 2015


Heat flux management via advanced magnetic divertor configurations and divertor detachment
journal, August 2015


Scrape-off layer radiation and heat load to the ASDEX Upgrade LYRA divertor
journal, July 1999


Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes
journal, January 2015


Overview of the results on divertor heat loads in RMP controlled H-mode plasmas on DIII-D
journal, August 2009


Works referencing / citing this record:

Physics of ultimate detachment of a tokamak divertor plasma
journal, September 2017


Erosion dynamics of tungsten fuzz during ELM-like heat loading
journal, April 2018