skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity

Abstract

Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant α-proteobacteria and γ-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. As a result, this work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions ofmore » plant microbiome under salinity.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [5];  [6];  [3];  [6]
  1. Chinese Academy of Forestry, Hangzhou (People's Republic of China)
  2. Institute of Chemical Engineering, Vienna (Austria)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Adaptive Symbiotic Technologies, Seattle, WA (United States)
  5. Adaptive Symbiotic Technologies, Seattle, WA (United States); Univ. of Washington, Seattle, WA (United States)
  6. Zhejiang Univ. (People's Republic of China)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1325488
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal Issue: 10; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Yuan, Zhilin, Druzhinina, Irina S., Labbé, Jessy, Redman, Regina, Qin, Yuan, Rodriguez, Russell, Zhang, Chulong, Tuskan, Gerald A., and Lin, Fucheng. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. United States: N. p., 2016. Web. doi:10.1038/srep32467.
Yuan, Zhilin, Druzhinina, Irina S., Labbé, Jessy, Redman, Regina, Qin, Yuan, Rodriguez, Russell, Zhang, Chulong, Tuskan, Gerald A., & Lin, Fucheng. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. United States. doi:10.1038/srep32467.
Yuan, Zhilin, Druzhinina, Irina S., Labbé, Jessy, Redman, Regina, Qin, Yuan, Rodriguez, Russell, Zhang, Chulong, Tuskan, Gerald A., and Lin, Fucheng. 2016. "Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity". United States. doi:10.1038/srep32467. https://www.osti.gov/servlets/purl/1325488.
@article{osti_1325488,
title = {Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity},
author = {Yuan, Zhilin and Druzhinina, Irina S. and Labbé, Jessy and Redman, Regina and Qin, Yuan and Rodriguez, Russell and Zhang, Chulong and Tuskan, Gerald A. and Lin, Fucheng},
abstractNote = {Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant α-proteobacteria and γ-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. As a result, this work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity.},
doi = {10.1038/srep32467},
journal = {Scientific Reports},
number = 10,
volume = 6,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Batsmore » with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.« less
  • Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism andmore » essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.« less
  • Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less
  • Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
  • Cactaceae represents one of the most species-rich families of succulent plants native to arid and semi-arid ecosystems, yet the associations Cacti establish with microorganisms and the rules governing microbial community assembly remain poorly understood. We analyzed the composition, diversity, and factors influencing above- and below-ground bacterial, archaeal, and fungal communities associated with two native and sympatric Cacti species: Myrtillocactus geometrizans and Opuntia robusta. Phylogenetic profiling showed that the composition and assembly of microbial communities associated with Cacti were primarily influenced by the plant compartment; plant species, site, and season played only a minor role. Remarkably, bacterial, and archaeal diversity wasmore » higher in the phyllosphere than in the rhizosphere of Cacti, while the opposite was true for fungi. Semi-arid soils exhibited the highest levels of microbial diversity whereas the stem endosphere the lowest. Despite their taxonomic distance, M. geometrizans and O. robusta shared most microbial taxa in all analyzed compartments. Influence of the plant host did only play a larger role in the fungal communities of the stem endosphere. These results suggest that fungi establish specific interactions with their host plant inside the stem, whereas microbial communities in the other plant compartments may play similar functional roles in these two species. Biochemical and molecular characterization of seed-borne bacteria of Cacti supports the idea that these microbial symbionts may be vertically inherited and could promote plant growth and drought tolerance for the fitness of the Cacti holobiont. We envision this knowledge will help improve and sustain agriculture in arid and semi-arid regions of the world.« less